Spaces:
Sleeping
Sleeping
Matej
commited on
Commit
•
5e00ad7
1
Parent(s):
adf8c13
remove gr.dropdown
Browse files
my_app.py
CHANGED
@@ -4,7 +4,7 @@ from huggingface_hub import from_pretrained_keras
|
|
4 |
|
5 |
# Load your trained models
|
6 |
model1 = from_pretrained_keras("ml-debi/EfficientNetB0-Food101")
|
7 |
-
model2 = from_pretrained_keras("ml-debi/EfficientNetB0-Food101")
|
8 |
|
9 |
with open('classes.txt', 'r') as f:
|
10 |
classes = [line.strip() for line in f]
|
@@ -16,11 +16,11 @@ model1_info = """
|
|
16 |
This model is based on the EfficientNetB0 architecture and was trained on the Food101 dataset.
|
17 |
"""
|
18 |
|
19 |
-
model2_info = """
|
20 |
-
|
21 |
|
22 |
-
This model is based on the EfficientNetB0 architecture and was trained on augmented data, providing improved generalization.
|
23 |
-
"""
|
24 |
|
25 |
def preprocess(image):
|
26 |
print("before resize", image.shape)
|
@@ -30,15 +30,15 @@ def preprocess(image):
|
|
30 |
print("After expanddims", image.shape)
|
31 |
return image
|
32 |
|
33 |
-
def predict(
|
34 |
# Choose the model based on the dropdown selection
|
35 |
-
print("---model_selection---", model_selection) #
|
36 |
-
model = model1 if model_selection == "EfficentNetB0 Fine Tune" else model2
|
37 |
|
38 |
-
print(model.summary())
|
39 |
|
40 |
image = preprocess(image)
|
41 |
-
prediction =
|
42 |
print("model prediction", prediction)
|
43 |
predicted_class = classes[int(tf.argmax(prediction, axis=1))]
|
44 |
confidence = tf.reduce_max(prediction).numpy()
|
@@ -46,10 +46,10 @@ def predict(model_selection, image):
|
|
46 |
|
47 |
iface = gr.Interface(
|
48 |
fn=predict,
|
49 |
-
inputs=[gr.
|
50 |
outputs=[gr.Textbox(label="Predicted Class"), gr.Textbox(label="Confidence")],
|
51 |
title="Transfer Learning Mini Project",
|
52 |
-
description=f"{model1_info}\n
|
53 |
)
|
54 |
|
55 |
iface.launch()
|
|
|
4 |
|
5 |
# Load your trained models
|
6 |
model1 = from_pretrained_keras("ml-debi/EfficientNetB0-Food101")
|
7 |
+
#model2 = from_pretrained_keras("ml-debi/EfficientNetB0-Food101")
|
8 |
|
9 |
with open('classes.txt', 'r') as f:
|
10 |
classes = [line.strip() for line in f]
|
|
|
16 |
This model is based on the EfficientNetB0 architecture and was trained on the Food101 dataset.
|
17 |
"""
|
18 |
|
19 |
+
#model2_info = """
|
20 |
+
#### Model 2 Information
|
21 |
|
22 |
+
#This model is based on the EfficientNetB0 architecture and was trained on augmented data, providing improved generalization.
|
23 |
+
#"""
|
24 |
|
25 |
def preprocess(image):
|
26 |
print("before resize", image.shape)
|
|
|
30 |
print("After expanddims", image.shape)
|
31 |
return image
|
32 |
|
33 |
+
def predict(image):
|
34 |
# Choose the model based on the dropdown selection
|
35 |
+
#print("---model_selection---", model_selection) #
|
36 |
+
#model = model1 if model_selection == "EfficentNetB0 Fine Tune" else model2
|
37 |
|
38 |
+
#print(model.summary())
|
39 |
|
40 |
image = preprocess(image)
|
41 |
+
prediction = model1.predict(image)
|
42 |
print("model prediction", prediction)
|
43 |
predicted_class = classes[int(tf.argmax(prediction, axis=1))]
|
44 |
confidence = tf.reduce_max(prediction).numpy()
|
|
|
46 |
|
47 |
iface = gr.Interface(
|
48 |
fn=predict,
|
49 |
+
inputs=[gr.Image()],
|
50 |
outputs=[gr.Textbox(label="Predicted Class"), gr.Textbox(label="Confidence")],
|
51 |
title="Transfer Learning Mini Project",
|
52 |
+
description=f"{model1_info}\n",
|
53 |
)
|
54 |
|
55 |
iface.launch()
|