Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
def dct1(x): | |
""" | |
Discrete Cosine Transform, Type I | |
:param x: the input signal | |
:return: the DCT-I of the signal over the last dimension | |
""" | |
x_shape = x.shape | |
x = x.view(-1, x_shape[-1]) | |
#return torch.rfft(torch.cat([x, x.flip([1])[:, 1:-1]], dim=1), 1)[:, :, 0].view(*x_shape) | |
return torch.fft.fft(torch.cat([x, x.flip([1])[:, 1:-1]], dim=1), 1)[:, :, 0].view(*x_shape) | |
def idct1(X): | |
""" | |
The inverse of DCT-I, which is just a scaled DCT-I | |
Our definition if idct1 is such that idct1(dct1(x)) == x | |
:param X: the input signal | |
:return: the inverse DCT-I of the signal over the last dimension | |
""" | |
n = X.shape[-1] | |
return dct1(X) / (2 * (n - 1)) | |
def dct(x, norm=None): | |
""" | |
Discrete Cosine Transform, Type II (a.k.a. the DCT) | |
For the meaning of the parameter `norm`, see: | |
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html | |
:param x: the input signal | |
:param norm: the normalization, None or 'ortho' | |
:return: the DCT-II of the signal over the last dimension | |
""" | |
x_shape = x.shape | |
N = x_shape[-1] | |
x = x.contiguous().view(-1, N) | |
v = torch.cat([x[:, ::2], x[:, 1::2].flip([1])], dim=1) | |
#Vc = torch.fft.rfft(v, 1, onesided=False) | |
Vc = torch.view_as_real(torch.fft.fft(v, dim=1)) | |
k = - torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * np.pi / (2 * N) | |
W_r = torch.cos(k) | |
W_i = torch.sin(k) | |
V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i | |
if norm == 'ortho': | |
V[:, 0] /= np.sqrt(N) * 2 | |
V[:, 1:] /= np.sqrt(N / 2) * 2 | |
V = 2 * V.view(*x_shape) | |
return V | |
def idct(X, norm=None): | |
""" | |
The inverse to DCT-II, which is a scaled Discrete Cosine Transform, Type III | |
Our definition of idct is that idct(dct(x)) == x | |
For the meaning of the parameter `norm`, see: | |
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html | |
:param X: the input signal | |
:param norm: the normalization, None or 'ortho' | |
:return: the inverse DCT-II of the signal over the last dimension | |
""" | |
x_shape = X.shape | |
N = x_shape[-1] | |
X_v = X.contiguous().view(-1, x_shape[-1]) / 2 | |
if norm == 'ortho': | |
X_v[:, 0] *= np.sqrt(N) * 2 | |
X_v[:, 1:] *= np.sqrt(N / 2) * 2 | |
k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * np.pi / (2 * N) | |
W_r = torch.cos(k) | |
W_i = torch.sin(k) | |
V_t_r = X_v | |
V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1) | |
V_r = V_t_r * W_r - V_t_i * W_i | |
V_i = V_t_r * W_i + V_t_i * W_r | |
V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2) | |
#v = torch.irfft(V, 1, onesided=False) | |
v = torch.fft.irfft(torch.view_as_complex(V), n=V.shape[1], dim=1) | |
x = v.new_zeros(v.shape) | |
x[:, ::2] += v[:, :N - (N // 2)] | |
x[:, 1::2] += v.flip([1])[:, :N // 2] | |
return x.view(*x_shape) | |
def dct_2d(x, norm=None): | |
""" | |
2-dimentional Discrete Cosine Transform, Type II (a.k.a. the DCT) | |
For the meaning of the parameter `norm`, see: | |
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html | |
:param x: the input signal | |
:param norm: the normalization, None or 'ortho' | |
:return: the DCT-II of the signal over the last 2 dimensions | |
""" | |
X1 = dct(x, norm=norm) | |
X2 = dct(X1.transpose(-1, -2), norm=norm) | |
return X2.transpose(-1, -2) | |
def idct_2d(X, norm=None): | |
""" | |
The inverse to 2D DCT-II, which is a scaled Discrete Cosine Transform, Type III | |
Our definition of idct is that idct_2d(dct_2d(x)) == x | |
For the meaning of the parameter `norm`, see: | |
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html | |
:param X: the input signal | |
:param norm: the normalization, None or 'ortho' | |
:return: the DCT-II of the signal over the last 2 dimensions | |
""" | |
x1 = idct(X, norm=norm) | |
x2 = idct(x1.transpose(-1, -2), norm=norm) | |
return x2.transpose(-1, -2) | |
def dct_3d(x, norm=None): | |
""" | |
3-dimentional Discrete Cosine Transform, Type II (a.k.a. the DCT) | |
For the meaning of the parameter `norm`, see: | |
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html | |
:param x: the input signal | |
:param norm: the normalization, None or 'ortho' | |
:return: the DCT-II of the signal over the last 3 dimensions | |
""" | |
X1 = dct(x, norm=norm) | |
X2 = dct(X1.transpose(-1, -2), norm=norm) | |
X3 = dct(X2.transpose(-1, -3), norm=norm) | |
return X3.transpose(-1, -3).transpose(-1, -2) | |
def idct_3d(X, norm=None): | |
""" | |
The inverse to 3D DCT-II, which is a scaled Discrete Cosine Transform, Type III | |
Our definition of idct is that idct_3d(dct_3d(x)) == x | |
For the meaning of the parameter `norm`, see: | |
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html | |
:param X: the input signal | |
:param norm: the normalization, None or 'ortho' | |
:return: the DCT-II of the signal over the last 3 dimensions | |
""" | |
x1 = idct(X, norm=norm) | |
x2 = idct(x1.transpose(-1, -2), norm=norm) | |
x3 = idct(x2.transpose(-1, -3), norm=norm) | |
return x3.transpose(-1, -3).transpose(-1, -2) | |
# class LinearDCT(nn.Linear): | |
# """Implement any DCT as a linear layer; in practice this executes around | |
# 50x faster on GPU. Unfortunately, the DCT matrix is stored, which will | |
# increase memory usage. | |
# :param in_features: size of expected input | |
# :param type: which dct function in this file to use""" | |
# | |
# def __init__(self, in_features, type, norm=None, bias=False): | |
# self.type = type | |
# self.N = in_features | |
# self.norm = norm | |
# super(LinearDCT, self).__init__(in_features, in_features, bias=bias) | |
# | |
# def reset_parameters(self): | |
# # initialise using dct function | |
# I = torch.eye(self.N) | |
# if self.type == 'dct1': | |
# self.weight.data = dct1(I).data.t() | |
# elif self.type == 'idct1': | |
# self.weight.data = idct1(I).data.t() | |
# elif self.type == 'dct': | |
# self.weight.data = dct(I, norm=self.norm).data.t() | |
# elif self.type == 'idct': | |
# self.weight.data = idct(I, norm=self.norm).data.t() | |
# self.weight.require_grad = False # don't learn this! | |
class LinearDCT(nn.Module): | |
"""Implement any DCT as a linear layer; in practice this executes around | |
50x faster on GPU. Unfortunately, the DCT matrix is stored, which will | |
increase memory usage. | |
:param in_features: size of expected input | |
:param type: which dct function in this file to use""" | |
def __init__(self, in_features, type, norm=None): | |
super(LinearDCT, self).__init__() | |
self.type = type | |
self.N = in_features | |
self.norm = norm | |
I = torch.eye(self.N) | |
if self.type == 'dct1': | |
self.weight = dct1(I).data.t() | |
elif self.type == 'idct1': | |
self.weight = idct1(I).data.t() | |
elif self.type == 'dct': | |
self.weight = dct(I, norm=self.norm).data.t() | |
elif self.type == 'idct': | |
self.weight = idct(I, norm=self.norm).data.t() | |
# self.register_buffer('weight', kernel) | |
# self.weight = kernel | |
def forward(self, x): | |
return F.linear(x, weight=self.weight.cuda(x.get_device())) | |
def apply_linear_2d(x, linear_layer): | |
"""Can be used with a LinearDCT layer to do a 2D DCT. | |
:param x: the input signal | |
:param linear_layer: any PyTorch Linear layer | |
:return: result of linear layer applied to last 2 dimensions | |
""" | |
X1 = linear_layer(x) | |
X2 = linear_layer(X1.transpose(-1, -2)) | |
return X2.transpose(-1, -2) | |
def apply_linear_3d(x, linear_layer): | |
"""Can be used with a LinearDCT layer to do a 3D DCT. | |
:param x: the input signal | |
:param linear_layer: any PyTorch Linear layer | |
:return: result of linear layer applied to last 3 dimensions | |
""" | |
X1 = linear_layer(x) | |
X2 = linear_layer(X1.transpose(-1, -2)) | |
X3 = linear_layer(X2.transpose(-1, -3)) | |
return X3.transpose(-1, -3).transpose(-1, -2) | |
if __name__ == '__main__': | |
x = torch.Tensor(1000, 4096) | |
x.normal_(0, 1) | |
linear_dct = LinearDCT(4096, 'dct') | |
error = torch.abs(dct(x) - linear_dct(x)) | |
assert error.max() < 1e-3, (error, error.max()) | |
linear_idct = LinearDCT(4096, 'idct') | |
error = torch.abs(idct(x) - linear_idct(x)) | |
assert error.max() < 1e-3, (error, error.max()) | |