File size: 8,608 Bytes
6e70c4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F


def dct1(x):
    """
    Discrete Cosine Transform, Type I

    :param x: the input signal
    :return: the DCT-I of the signal over the last dimension
    """
    x_shape = x.shape
    x = x.view(-1, x_shape[-1])

    #return torch.rfft(torch.cat([x, x.flip([1])[:, 1:-1]], dim=1), 1)[:, :, 0].view(*x_shape)
    return torch.fft.fft(torch.cat([x, x.flip([1])[:, 1:-1]], dim=1), 1)[:, :, 0].view(*x_shape)


def idct1(X):
    """
    The inverse of DCT-I, which is just a scaled DCT-I

    Our definition if idct1 is such that idct1(dct1(x)) == x

    :param X: the input signal
    :return: the inverse DCT-I of the signal over the last dimension
    """
    n = X.shape[-1]
    return dct1(X) / (2 * (n - 1))


def dct(x, norm=None):
    """
    Discrete Cosine Transform, Type II (a.k.a. the DCT)

    For the meaning of the parameter `norm`, see:
    https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html

    :param x: the input signal
    :param norm: the normalization, None or 'ortho'
    :return: the DCT-II of the signal over the last dimension
    """
    x_shape = x.shape
    N = x_shape[-1]
    x = x.contiguous().view(-1, N)

    v = torch.cat([x[:, ::2], x[:, 1::2].flip([1])], dim=1)

    #Vc = torch.fft.rfft(v, 1, onesided=False)
    Vc = torch.view_as_real(torch.fft.fft(v, dim=1))

    k = - torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * np.pi / (2 * N)
    W_r = torch.cos(k)
    W_i = torch.sin(k)

    V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i

    if norm == 'ortho':
        V[:, 0] /= np.sqrt(N) * 2
        V[:, 1:] /= np.sqrt(N / 2) * 2

    V = 2 * V.view(*x_shape)

    return V


def idct(X, norm=None):
    """
    The inverse to DCT-II, which is a scaled Discrete Cosine Transform, Type III

    Our definition of idct is that idct(dct(x)) == x

    For the meaning of the parameter `norm`, see:
    https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html

    :param X: the input signal
    :param norm: the normalization, None or 'ortho'
    :return: the inverse DCT-II of the signal over the last dimension
    """

    x_shape = X.shape
    N = x_shape[-1]

    X_v = X.contiguous().view(-1, x_shape[-1]) / 2

    if norm == 'ortho':
        X_v[:, 0] *= np.sqrt(N) * 2
        X_v[:, 1:] *= np.sqrt(N / 2) * 2

    k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * np.pi / (2 * N)
    W_r = torch.cos(k)
    W_i = torch.sin(k)

    V_t_r = X_v
    V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1)

    V_r = V_t_r * W_r - V_t_i * W_i
    V_i = V_t_r * W_i + V_t_i * W_r

    V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2)

    #v = torch.irfft(V, 1, onesided=False)
    v = torch.fft.irfft(torch.view_as_complex(V), n=V.shape[1], dim=1)
    x = v.new_zeros(v.shape)
    x[:, ::2] += v[:, :N - (N // 2)]
    x[:, 1::2] += v.flip([1])[:, :N // 2]

    return x.view(*x_shape)


def dct_2d(x, norm=None):
    """
    2-dimentional Discrete Cosine Transform, Type II (a.k.a. the DCT)

    For the meaning of the parameter `norm`, see:
    https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html

    :param x: the input signal
    :param norm: the normalization, None or 'ortho'
    :return: the DCT-II of the signal over the last 2 dimensions
    """
    X1 = dct(x, norm=norm)
    X2 = dct(X1.transpose(-1, -2), norm=norm)
    return X2.transpose(-1, -2)


def idct_2d(X, norm=None):
    """
    The inverse to 2D DCT-II, which is a scaled Discrete Cosine Transform, Type III

    Our definition of idct is that idct_2d(dct_2d(x)) == x

    For the meaning of the parameter `norm`, see:
    https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html

    :param X: the input signal
    :param norm: the normalization, None or 'ortho'
    :return: the DCT-II of the signal over the last 2 dimensions
    """
    x1 = idct(X, norm=norm)
    x2 = idct(x1.transpose(-1, -2), norm=norm)
    return x2.transpose(-1, -2)


def dct_3d(x, norm=None):
    """
    3-dimentional Discrete Cosine Transform, Type II (a.k.a. the DCT)

    For the meaning of the parameter `norm`, see:
    https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html

    :param x: the input signal
    :param norm: the normalization, None or 'ortho'
    :return: the DCT-II of the signal over the last 3 dimensions
    """
    X1 = dct(x, norm=norm)
    X2 = dct(X1.transpose(-1, -2), norm=norm)
    X3 = dct(X2.transpose(-1, -3), norm=norm)
    return X3.transpose(-1, -3).transpose(-1, -2)


def idct_3d(X, norm=None):
    """
    The inverse to 3D DCT-II, which is a scaled Discrete Cosine Transform, Type III

    Our definition of idct is that idct_3d(dct_3d(x)) == x

    For the meaning of the parameter `norm`, see:
    https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html

    :param X: the input signal
    :param norm: the normalization, None or 'ortho'
    :return: the DCT-II of the signal over the last 3 dimensions
    """
    x1 = idct(X, norm=norm)
    x2 = idct(x1.transpose(-1, -2), norm=norm)
    x3 = idct(x2.transpose(-1, -3), norm=norm)
    return x3.transpose(-1, -3).transpose(-1, -2)


# class LinearDCT(nn.Linear):
#     """Implement any DCT as a linear layer; in practice this executes around
#     50x faster on GPU. Unfortunately, the DCT matrix is stored, which will
#     increase memory usage.
#     :param in_features: size of expected input
#     :param type: which dct function in this file to use"""
#
#     def __init__(self, in_features, type, norm=None, bias=False):
#         self.type = type
#         self.N = in_features
#         self.norm = norm
#         super(LinearDCT, self).__init__(in_features, in_features, bias=bias)
#
#     def reset_parameters(self):
#         # initialise using dct function
#         I = torch.eye(self.N)
#         if self.type == 'dct1':
#             self.weight.data = dct1(I).data.t()
#         elif self.type == 'idct1':
#             self.weight.data = idct1(I).data.t()
#         elif self.type == 'dct':
#             self.weight.data = dct(I, norm=self.norm).data.t()
#         elif self.type == 'idct':
#             self.weight.data = idct(I, norm=self.norm).data.t()
#         self.weight.require_grad = False  # don't learn this!

class LinearDCT(nn.Module):
    """Implement any DCT as a linear layer; in practice this executes around
    50x faster on GPU. Unfortunately, the DCT matrix is stored, which will
    increase memory usage.
    :param in_features: size of expected input
    :param type: which dct function in this file to use"""

    def __init__(self, in_features, type, norm=None):
        super(LinearDCT, self).__init__()
        self.type = type
        self.N = in_features
        self.norm = norm
        I = torch.eye(self.N)
        if self.type == 'dct1':
            self.weight = dct1(I).data.t()
        elif self.type == 'idct1':
            self.weight = idct1(I).data.t()
        elif self.type == 'dct':
            self.weight = dct(I, norm=self.norm).data.t()
        elif self.type == 'idct':
            self.weight = idct(I, norm=self.norm).data.t()
        # self.register_buffer('weight', kernel)
        # self.weight = kernel

    def forward(self, x):
        return F.linear(x, weight=self.weight.cuda(x.get_device()))


def apply_linear_2d(x, linear_layer):
    """Can be used with a LinearDCT layer to do a 2D DCT.
    :param x: the input signal
    :param linear_layer: any PyTorch Linear layer
    :return: result of linear layer applied to last 2 dimensions
    """
    X1 = linear_layer(x)
    X2 = linear_layer(X1.transpose(-1, -2))
    return X2.transpose(-1, -2)


def apply_linear_3d(x, linear_layer):
    """Can be used with a LinearDCT layer to do a 3D DCT.
    :param x: the input signal
    :param linear_layer: any PyTorch Linear layer
    :return: result of linear layer applied to last 3 dimensions
    """
    X1 = linear_layer(x)
    X2 = linear_layer(X1.transpose(-1, -2))
    X3 = linear_layer(X2.transpose(-1, -3))
    return X3.transpose(-1, -3).transpose(-1, -2)


if __name__ == '__main__':
    x = torch.Tensor(1000, 4096)
    x.normal_(0, 1)
    linear_dct = LinearDCT(4096, 'dct')
    error = torch.abs(dct(x) - linear_dct(x))
    assert error.max() < 1e-3, (error, error.max())
    linear_idct = LinearDCT(4096, 'idct')
    error = torch.abs(idct(x) - linear_idct(x))
    assert error.max() < 1e-3, (error, error.max())