|
import os |
|
import pandas as pd |
|
import torch |
|
import argparse |
|
import shutil |
|
from tqdm import tqdm |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorWithPadding |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-f", "--filename", type=str) |
|
parser.add_argument( |
|
"data_folder", |
|
nargs="?", |
|
type=str, |
|
default="data_multi", |
|
) |
|
args = parser.parse_args() |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
os.makedirs("data_translated", exist_ok=True) |
|
|
|
if args.filename == "015_ccs_synthetic_en.feather": |
|
|
|
shutil.copy2(os.path.join(args.data_folder, "015_ccs_synthetic_en.feather"), "data_translated") |
|
os._exit(0) |
|
|
|
df = pd.read_feather(os.path.join(args.data_folder, args.filename)) |
|
df["opus_mt_url"] = df["opus_mt_url"].str.replace("https://huggingface.co./", "") |
|
print(f"Starting translation of English to {df['multi_language_name'][0]}") |
|
|
|
|
|
class CaptionDataset(Dataset): |
|
def __init__(self, df, tokenizer_name): |
|
self.df = df |
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) |
|
|
|
def __len__(self): |
|
return len(self.df) |
|
|
|
def __getitem__(self, index): |
|
sentence1 = df.loc[index, "caption"] |
|
|
|
tokens = self.tokenizer(sentence1, return_tensors="pt") |
|
|
|
return tokens |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(df["opus_mt_url"][0]) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(df["opus_mt_url"][0]) |
|
model.to(device) |
|
model.eval() |
|
|
|
|
|
def custom_collate_fn(data): |
|
""" |
|
Data collator with padding. |
|
""" |
|
tokens = [sample["input_ids"][0] for sample in data] |
|
attention_masks = [sample["attention_mask"][0] for sample in data] |
|
|
|
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True) |
|
padded_tokens = torch.nn.utils.rnn.pad_sequence(tokens, batch_first=True) |
|
|
|
batch = {"input_ids": padded_tokens, "attention_mask": attention_masks} |
|
return batch |
|
|
|
|
|
if df["multi_target"][0] == 1: |
|
|
|
|
|
df["caption"] = ">>" + df["target_code"] + "<<" + df["caption"] |
|
|
|
test_data = CaptionDataset(df, df["opus_mt_url"][0]) |
|
test_dataloader = DataLoader( |
|
test_data, |
|
batch_size=50, |
|
shuffle=False, |
|
num_workers=4, |
|
collate_fn=custom_collate_fn, |
|
) |
|
|
|
with torch.no_grad(): |
|
decoded_tokens = [] |
|
for i, batch in enumerate(tqdm(test_dataloader)): |
|
|
|
batch = {k: v.to(device) for k, v in batch.items()} |
|
output_tokens = model.generate(**batch) |
|
decoded_tokens += tokenizer.batch_decode(output_tokens.to("cpu"), skip_special_tokens=True) |
|
|
|
df["caption_multi"] = decoded_tokens |
|
df.to_feather(os.path.join("data_translated", args.filename)) |
|
|
|
print(f"Finished translating English to {df['multi_language_name'][0]}") |
|
|