medmac01 commited on
Commit
3bd5293
1 Parent(s): 9f5fbfb

Added multilingual_clip module

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .DS_Store +0 -0
  2. Multilingual_CLIP/HISTORY.md +39 -0
  3. Multilingual_CLIP/Images/Multilingual-CLIP.png +0 -0
  4. Multilingual_CLIP/Images/Orange Apple.png +0 -0
  5. Multilingual_CLIP/Images/Smile.jpg +0 -0
  6. Multilingual_CLIP/Images/bananas.jpg +0 -0
  7. Multilingual_CLIP/Images/fruit bowl.jpg +0 -0
  8. Multilingual_CLIP/Images/green apple.jpg +0 -0
  9. Multilingual_CLIP/Images/happy person.jpg +0 -0
  10. Multilingual_CLIP/Images/man on bike.jpg +0 -0
  11. Multilingual_CLIP/Images/purple apple.png +0 -0
  12. Multilingual_CLIP/Images/red apple.jpg +0 -0
  13. Multilingual_CLIP/Images/sad.jpg +0 -0
  14. Multilingual_CLIP/LICENSE +21 -0
  15. Multilingual_CLIP/Makefile +3 -0
  16. Multilingual_CLIP/Model Cards/M-BERT Base 69/Fine-Tune-Languages.md +42 -0
  17. Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/French-Both.png +0 -0
  18. Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/German-Both.png +0 -0
  19. Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Greek-Both.png +0 -0
  20. Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Kannada-Both.png +0 -0
  21. Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/M-Swedish-Both.png +0 -0
  22. Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Russian-Both.png +0 -0
  23. Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Spanish-Both.png +0 -0
  24. Multilingual_CLIP/Model Cards/M-BERT Base 69/README.md +74 -0
  25. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Fine-Tune-Languages.md +42 -0
  26. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/French-Both.png +0 -0
  27. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/German-Both.png +0 -0
  28. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/Greek-Both.png +0 -0
  29. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/Kannada-Both.png +0 -0
  30. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/M-Swedish-Both.png +0 -0
  31. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/Russian-Both.png +0 -0
  32. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/Spanish-Both.png +0 -0
  33. Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/README.md +74 -0
  34. Multilingual_CLIP/Model Cards/M-BERT Distil 40/Fine-Tune-Languages.md +42 -0
  35. Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/French-Both.png +0 -0
  36. Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/German-Both.png +0 -0
  37. Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/Greek-Both.png +0 -0
  38. Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/Kannada-Both.png +0 -0
  39. Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/M-Swedish-Both.png +0 -0
  40. Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/Russian-Both.png +0 -0
  41. Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/Spanish-Both.png +0 -0
  42. Multilingual_CLIP/Model Cards/M-BERT Distil 40/README.md +72 -0
  43. Multilingual_CLIP/Model Cards/Swe-CLIP 2M/README.md +29 -0
  44. Multilingual_CLIP/Model Cards/Swe-CLIP 500k/README.md +29 -0
  45. Multilingual_CLIP/Multilingual_CLIP.ipynb +0 -0
  46. Multilingual_CLIP/README.md +236 -0
  47. Multilingual_CLIP/inference_example.py +34 -0
  48. Multilingual_CLIP/larger_mclip.md +60 -0
  49. Multilingual_CLIP/legacy_get-weights.sh +20 -0
  50. Multilingual_CLIP/legacy_inference.py +13 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
Multilingual_CLIP/HISTORY.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## 1.0.10
2
+
3
+ * it works
4
+
5
+ ## 1.0.8
6
+
7
+ * small fix
8
+
9
+ ## 1.0.7
10
+
11
+ * small fix
12
+
13
+ ## 1.0.6
14
+
15
+ * small fix
16
+
17
+ ## 1.0.5
18
+
19
+ * small fix
20
+
21
+ ## 1.0.4
22
+
23
+ * small fix
24
+
25
+ ## 1.0.3
26
+
27
+ * rename all mentions to multilingual_clip
28
+
29
+ ## 1.0.2
30
+
31
+ * Multilingual-clip
32
+
33
+ ## 1.0.1
34
+
35
+ * name it m-clip
36
+
37
+ ## 1.0.0
38
+
39
+ * first pypi release of multilingual_clip
Multilingual_CLIP/Images/Multilingual-CLIP.png ADDED
Multilingual_CLIP/Images/Orange Apple.png ADDED
Multilingual_CLIP/Images/Smile.jpg ADDED
Multilingual_CLIP/Images/bananas.jpg ADDED
Multilingual_CLIP/Images/fruit bowl.jpg ADDED
Multilingual_CLIP/Images/green apple.jpg ADDED
Multilingual_CLIP/Images/happy person.jpg ADDED
Multilingual_CLIP/Images/man on bike.jpg ADDED
Multilingual_CLIP/Images/purple apple.png ADDED
Multilingual_CLIP/Images/red apple.jpg ADDED
Multilingual_CLIP/Images/sad.jpg ADDED
Multilingual_CLIP/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Fredrik Carlsson
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
Multilingual_CLIP/Makefile ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ install: ## [Local development] Upgrade pip, install requirements, install package.
2
+ python -m pip install -U pip
3
+ python -m pip install -e .
Multilingual_CLIP/Model Cards/M-BERT Base 69/Fine-Tune-Languages.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### List of languages included during CLIP fine-tuning
2
+
3
+ * Albanian
4
+ * Amharic
5
+ * Arabic
6
+ * Azerbaijani
7
+ * Bengali
8
+ * Bulgarian
9
+ * Catalan
10
+ * Chinese (Simplified)
11
+ * Chinese (Traditional)
12
+ * Dutch
13
+ * English
14
+ * Estonian
15
+ * Farsi
16
+ * French
17
+ * Georgian
18
+ * German
19
+ * Greek
20
+ * Hindi
21
+ * Hungarian
22
+ * Icelandic
23
+ * Indonesian
24
+ * Italian
25
+ * Japanese
26
+ * Kazakh
27
+ * Korean
28
+ * Latvian
29
+ * Macedonian
30
+ * Malay
31
+ * Pashto
32
+ * Polish
33
+ * Romanian
34
+ * Russian
35
+ * Slovenian
36
+ * Spanish
37
+ * Swedish
38
+ * Tagalog
39
+ * Thai
40
+ * Turkish
41
+ * Urdu
42
+ * Vietnamese
Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/French-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/German-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Greek-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Kannada-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/M-Swedish-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Russian-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Spanish-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base 69/README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br />
2
+ <p align="center">
3
+ <h1 align="center">M-BERT Base 69</h1>
4
+
5
+ <p align="center">
6
+ <a href="https://huggingface.co/M-CLIP/M-BERT-Base-69">Huggingface Model</a>
7
+ ·
8
+ <a href="https://huggingface.co/bert-base-multilingual-cased">Huggingface Base Model</a>
9
+ </p>
10
+ </p>
11
+
12
+ ## Usage
13
+ To use this model along with the original CLIP vision encoder follow the [main page usage instructions](https://github.com/FreddeFrallan/Multilingual-CLIP) to download the additional linear weights.
14
+ Once this is done, you can load and use the model with the following code
15
+ ```python
16
+ from multilingual_clip import multilingual_clip
17
+
18
+ model = multilingual_clip.load_model('M-BERT-Base-69')
19
+ embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?'])
20
+ print(embeddings.shape)
21
+ # Yields: torch.Size([3, 640])
22
+ ```
23
+
24
+ <!-- ABOUT THE PROJECT -->
25
+ ## About
26
+ A [bert-base-multilingual](https://huggingface.co/bert-base-multilingual-cased) tuned to match the embedding space for 69 languages, to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br>
27
+ A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 69 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md).
28
+
29
+ Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language.
30
+ All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages.
31
+
32
+ <!---
33
+ ## Evaluation
34
+ A non-rigorous qualitative evaluation shows that for the languages French, German, Spanish, Russian, Swedish and Greek it seemingly yields respectable results for most instances. The exception being that Greeks are apparently unable to recognize happy persons. <br>
35
+ When testing on Kannada, a language which was included during pre-training but not fine-tuning, it performed close to random
36
+
37
+ <!---
38
+ The qualitative test was organized into two sets of images and their corresponding text descriptions. The texts were manually translated into each different test languages, where the two sets include the following images:
39
+ #### Set Nr 1
40
+ * A man on a motorcycle
41
+ * A green apple
42
+ * A bowl of fruits
43
+ * A bunch of bananas hanging from a tree
44
+ * A happy person laughing/smiling
45
+ * A sad person crying
46
+ #### Set Nr 2
47
+ The second set included only images of fruits, and non-realistic photoshopped images, in an attempt to increase the difficulty.
48
+ * A green apple
49
+ * A red apple
50
+ * A purple apple (photoshopped)
51
+ * A orange apple (photoshopped)
52
+ * A bowl of fruits
53
+ * A bunch of bananas hanging from a tree
54
+
55
+ <!---
56
+ ### Results
57
+ The results depicted below are formatted so that each <b>column</b> represents the Softmax prediction over all the texts given the corresponding image. The images and matchings texts are ordered identically, hence a perfect solution would have 100 across the diagonal.
58
+
59
+ <!---
60
+ #### French
61
+ ![Alt](Images/French-Both.png)
62
+ #### German
63
+ ![Alt](Images/German-Both.png)
64
+ #### Spanish
65
+ ![Alt](Images/Spanish-Both.png)
66
+ #### Russian
67
+ ![Alt](Images/Russian-Both.png)
68
+ #### Swedish
69
+ ![Alt](Images/M-Swedish-Both.png)
70
+ #### Greek
71
+ ![Alt](Images/Greek-Both.png)
72
+ #### Kannada
73
+ Kannada was <b>not included</b> in the 40 fine-tuning languages, but included during language modelling pre-training
74
+ ![Alt](Images/Kannada-Both.png)
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Fine-Tune-Languages.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### List of languages included during CLIP fine-tuning
2
+
3
+ * Albanian
4
+ * Amharic
5
+ * Arabic
6
+ * Azerbaijani
7
+ * Bengali
8
+ * Bulgarian
9
+ * Catalan
10
+ * Chinese (Simplified)
11
+ * Chinese (Traditional)
12
+ * Dutch
13
+ * English
14
+ * Estonian
15
+ * Farsi
16
+ * French
17
+ * Georgian
18
+ * German
19
+ * Greek
20
+ * Hindi
21
+ * Hungarian
22
+ * Icelandic
23
+ * Indonesian
24
+ * Italian
25
+ * Japanese
26
+ * Kazakh
27
+ * Korean
28
+ * Latvian
29
+ * Macedonian
30
+ * Malay
31
+ * Pashto
32
+ * Polish
33
+ * Romanian
34
+ * Russian
35
+ * Slovenian
36
+ * Spanish
37
+ * Swedish
38
+ * Tagalog
39
+ * Thai
40
+ * Turkish
41
+ * Urdu
42
+ * Vietnamese
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/French-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/German-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/Greek-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/Kannada-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/M-Swedish-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/Russian-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/Images/Spanish-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Base ViT-B/README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br />
2
+ <p align="center">
3
+ <h1 align="center">M-BERT Base ViT-B</h1>
4
+
5
+ <p align="center">
6
+ <a href="https://huggingface.co/M-CLIP/M-BERT-Base-ViT-B">Huggingface Model</a>
7
+ ·
8
+ <a href="https://huggingface.co/bert-base-multilingual-cased">Huggingface Base Model</a>
9
+ </p>
10
+ </p>
11
+
12
+ ## Usage
13
+ To use this model along with the original CLIP vision encoder follow the [main page usage instructions](https://github.com/FreddeFrallan/Multilingual-CLIP) to download the additional linear weights.
14
+ Once this is done, you can load and use the model with the following code
15
+ ```python
16
+ from multilingual_clip import multilingual_clip
17
+
18
+ model = multilingual_clip.load_model('M-BERT-Base-ViT-B')
19
+ embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?'])
20
+ print(embeddings.shape)
21
+ # Yields: torch.Size([3, 640])
22
+ ```
23
+
24
+ <!-- ABOUT THE PROJECT -->
25
+ ## About
26
+ A [bert-base-multilingual](https://huggingface.co/bert-base-multilingual-cased) tuned to match the embedding space for 69 languages, to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br>
27
+ A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 69 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md).
28
+
29
+ Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language.
30
+ All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages.
31
+
32
+ <!---
33
+ ## Evaluation
34
+ A non-rigorous qualitative evaluation shows that for the languages French, German, Spanish, Russian, Swedish and Greek it seemingly yields respectable results for most instances. The exception being that Greeks are apparently unable to recognize happy persons. <br>
35
+ When testing on Kannada, a language which was included during pre-training but not fine-tuning, it performed close to random
36
+
37
+ <!---
38
+ The qualitative test was organized into two sets of images and their corresponding text descriptions. The texts were manually translated into each different test languages, where the two sets include the following images:
39
+ #### Set Nr 1
40
+ * A man on a motorcycle
41
+ * A green apple
42
+ * A bowl of fruits
43
+ * A bunch of bananas hanging from a tree
44
+ * A happy person laughing/smiling
45
+ * A sad person crying
46
+ #### Set Nr 2
47
+ The second set included only images of fruits, and non-realistic photoshopped images, in an attempt to increase the difficulty.
48
+ * A green apple
49
+ * A red apple
50
+ * A purple apple (photoshopped)
51
+ * A orange apple (photoshopped)
52
+ * A bowl of fruits
53
+ * A bunch of bananas hanging from a tree
54
+
55
+ <!---
56
+ ### Results
57
+ The results depicted below are formatted so that each <b>column</b> represents the Softmax prediction over all the texts given the corresponding image. The images and matchings texts are ordered identically, hence a perfect solution would have 100 across the diagonal.
58
+
59
+ <!---
60
+ #### French
61
+ ![Alt](Images/French-Both.png)
62
+ #### German
63
+ ![Alt](Images/German-Both.png)
64
+ #### Spanish
65
+ ![Alt](Images/Spanish-Both.png)
66
+ #### Russian
67
+ ![Alt](Images/Russian-Both.png)
68
+ #### Swedish
69
+ ![Alt](Images/M-Swedish-Both.png)
70
+ #### Greek
71
+ ![Alt](Images/Greek-Both.png)
72
+ #### Kannada
73
+ Kannada was <b>not included</b> in the 40 fine-tuning languages, but included during language modelling pre-training
74
+ ![Alt](Images/Kannada-Both.png)
Multilingual_CLIP/Model Cards/M-BERT Distil 40/Fine-Tune-Languages.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### List of languages included during CLIP fine-tuning
2
+
3
+ * Albanian
4
+ * Amharic
5
+ * Arabic
6
+ * Azerbaijani
7
+ * Bengali
8
+ * Bulgarian
9
+ * Catalan
10
+ * Chinese (Simplified)
11
+ * Chinese (Traditional)
12
+ * Dutch
13
+ * English
14
+ * Estonian
15
+ * Farsi
16
+ * French
17
+ * Georgian
18
+ * German
19
+ * Greek
20
+ * Hindi
21
+ * Hungarian
22
+ * Icelandic
23
+ * Indonesian
24
+ * Italian
25
+ * Japanese
26
+ * Kazakh
27
+ * Korean
28
+ * Latvian
29
+ * Macedonian
30
+ * Malay
31
+ * Pashto
32
+ * Polish
33
+ * Romanian
34
+ * Russian
35
+ * Slovenian
36
+ * Spanish
37
+ * Swedish
38
+ * Tagalog
39
+ * Thai
40
+ * Turkish
41
+ * Urdu
42
+ * Vietnamese
Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/French-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/German-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/Greek-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/Kannada-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/M-Swedish-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/Russian-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Distil 40/Images/Spanish-Both.png ADDED
Multilingual_CLIP/Model Cards/M-BERT Distil 40/README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br />
2
+ <p align="center">
3
+ <h1 align="center">M-BERT Distil 40</h1>
4
+
5
+ <p align="center">
6
+ <a href="https://huggingface.co/M-CLIP/M-BERT-Distil-40">Huggingface Model</a>
7
+ ·
8
+ <a href="https://huggingface.co/distilbert-base-multilingual-cased">Huggingface Base Model</a>
9
+ </p>
10
+ </p>
11
+
12
+ ## Usage
13
+ To use this model along with the original CLIP vision encoder follow the [main page usage instructions](https://github.com/FreddeFrallan/Multilingual-CLIP) to download the additional linear weights.
14
+ Once this is done, you can load and use the model with the following code
15
+ ```python
16
+ from multilingual_clip import multilingual_clip
17
+
18
+ model = multilingual_clip.load_model('M-BERT-Distil-40')
19
+ embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?'])
20
+ print(embeddings.shape)
21
+ # Yields: torch.Size([3, 640])
22
+ ```
23
+
24
+ <!-- ABOUT THE PROJECT -->
25
+ ## About
26
+ A [distilbert-base-multilingual](https://huggingface.co/distilbert-base-multilingual-cased) tuned to match the embedding space for 40 languages, to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br>
27
+ A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 40 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md).
28
+
29
+ Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language.
30
+ All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages.
31
+
32
+
33
+ ## Evaluation
34
+ A non-rigorous qualitative evaluation shows that for the languages French, German, Spanish, Russian, Swedish and Greek it seemingly yields respectable results for most instances. The exception being that Greeks are apparently unable to recognize happy persons. <br>
35
+ When testing on Kannada, a language which was included during pre-training but not fine-tuning, it performed close to random
36
+
37
+ The qualitative test was organized into two sets of images and their corresponding text descriptions. The texts were manually translated into each different test languages, where the two sets include the following images:
38
+ #### Set Nr 1
39
+ * A man on a motorcycle
40
+ * A green apple
41
+ * A bowl of fruits
42
+ * A bunch of bananas hanging from a tree
43
+ * A happy person laughing/smiling
44
+ * A sad person crying
45
+ #### Set Nr 2
46
+ The second set included only images of fruits, and non-realistic photoshopped images, in an attempt to increase the difficulty.
47
+ * A green apple
48
+ * A red apple
49
+ * A purple apple (photoshopped)
50
+ * A orange apple (photoshopped)
51
+ * A bowl of fruits
52
+ * A bunch of bananas hanging from a tree
53
+
54
+ ### Results
55
+ The results depicted below are formatted so that each <b>column</b> represents the Softmax prediction over all the texts given the corresponding image. The images and matchings texts are ordered identically, hence a perfect solution would have 100 across the diagonal.
56
+
57
+ #### French
58
+ ![Alt](Images/French-Both.png)
59
+ #### German
60
+ ![Alt](Images/German-Both.png)
61
+ #### Spanish
62
+ ![Alt](Images/Spanish-Both.png)
63
+ #### Russian
64
+ ![Alt](Images/Russian-Both.png)
65
+ #### Swedish
66
+ ![Alt](Images/M-Swedish-Both.png)
67
+ #### Greek
68
+ ![Alt](Images/Greek-Both.png)
69
+ #### Kannada
70
+ Kannada was <b>not included</b> in the 40 fine-tuning languages, but included during language modelling pre-training
71
+ ![Alt](Images/Kannada-Both.png)
72
+
Multilingual_CLIP/Model Cards/Swe-CLIP 2M/README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br />
2
+ <p align="center">
3
+ <h1 align="center">Swe-CLIP 2M</h1>
4
+
5
+ <p align="center">
6
+ <a href="https://huggingface.co/M-CLIP/Swedish-2M">Huggingface Model</a>
7
+ ·
8
+ <a href="https://huggingface.co/KB/bert-base-swedish-cased">Huggingface Base Model</a>
9
+ </p>
10
+ </p>
11
+
12
+ ## Usage
13
+ To use this model along with the original CLIP vision encoder follow the [main page usage instructions](https://github.com/FreddeFrallan/Multilingual-CLIP) to download the additional linear weights.
14
+ Once this is done, you can load and use the model with the following code
15
+ ```python
16
+ from multilingual_clip import multilingual_clip
17
+
18
+ model = multilingual_clip.load_model('Swe-CLIP-2M')
19
+ embeddings = model(['Älgen är skogens konung!', 'Alla isbjörnar är vänsterhänta'])
20
+ print(embeddings.shape)
21
+ # Yields: torch.Size([2, 640])
22
+ ```
23
+
24
+ <!-- ABOUT THE PROJECT -->
25
+ ## About
26
+ A [KB/Bert-Swedish-Cased](https://huggingface.co/KB/bert-base-swedish-cased) tuned to match the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br>
27
+
28
+ Training data pairs was generated by sampling 2 Million sentences from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into Swedish.
29
+ All translation was done using the [Huggingface Opus Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-sv), which seemingly procudes higher quality translations than relying on the [AWS translate service](https://aws.amazon.com/translate/).
Multilingual_CLIP/Model Cards/Swe-CLIP 500k/README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br />
2
+ <p align="center">
3
+ <h1 align="center">Swe-CLIP 500k</h1>
4
+
5
+ <p align="center">
6
+ <a href="https://huggingface.co/M-CLIP/Swedish-500k">Huggingface Model</a>
7
+ ·
8
+ <a href="https://huggingface.co/KB/bert-base-swedish-cased">Huggingface Base Model</a>
9
+ </p>
10
+ </p>
11
+
12
+ ## Usage
13
+ To use this model along with the original CLIP vision encoder follow the [main page usage instructions](https://github.com/FreddeFrallan/Multilingual-CLIP) to download the additional linear weights.
14
+ Once this is done, you can load and use the model with the following code
15
+ ```python
16
+ from multilingual_clip import multilingual_clip
17
+
18
+ model = multilingual_clip.load_model('Swe-CLIP-500k')
19
+ embeddings = model(['Älgen är skogens konung!', 'Alla isbjörnar är vänsterhänta'])
20
+ print(embeddings.shape)
21
+ # Yields: torch.Size([2, 640])
22
+ ```
23
+
24
+ <!-- ABOUT THE PROJECT -->
25
+ ## About
26
+ A [KB/Bert-Swedish-Cased](https://huggingface.co/KB/bert-base-swedish-cased) tuned to match the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br>
27
+
28
+ Training data pairs was generated by sampling 500k sentences from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into Swedish.
29
+ All translation was done using the [Huggingface Opus Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-sv), which seemingly procudes higher quality translations than relying on the [AWS translate service](https://aws.amazon.com/translate/).
Multilingual_CLIP/Multilingual_CLIP.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Multilingual_CLIP/README.md ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br />
2
+ <p align="center">
3
+ <h1 align="center">Multilingual-CLIP</h1>
4
+ <h3 align="center">OpenAI CLIP text encoders for any language</h3>
5
+
6
+ <p align="center">
7
+ <a href="https://rom1504.github.io/clip-retrieval/?back=https%3A%2F%2Fknn5.laion.ai&index=laion_400m&useMclip=true">Live Demo</a>
8
+ ·
9
+ <a href="https://huggingface.co/M-CLIP">Pre-trained Models</a>
10
+ ·
11
+ <a href="https://github.com/FreddeFrallan/Contrastive-Tension/issues">Report Bug</a>
12
+ </p>
13
+ </p>
14
+
15
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/FreddeFrallan/Multilingual-CLIP/blob/master/Multilingual_CLIP.ipynb)
16
+ [![pypi](https://img.shields.io/pypi/v/multilingual-clip.svg)](https://pypi.python.org/pypi/multilingual-clip)
17
+
18
+
19
+ <!-- ABOUT THE PROJECT -->
20
+ ## Overview
21
+ ![Alt text](Images/Multilingual-CLIP.png?raw=true "Title")
22
+
23
+ [OpenAI](https://openai.com/) recently released the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) in which they present the CLIP (Contrastive Language–Image Pre-training) model. This model is trained to connect text and images, by matching their corresponding vector representations using a contrastive learning objective.
24
+ CLIP consists of two separate models, a visual encoder and a text encoder. These were trained on a wooping 400 Million images and corresponding captions.
25
+ OpenAI has since released a set of their smaller CLIP models, which can be found on the [official CLIP Github](https://github.com/openai/CLIP).
26
+
27
+ ## Demo
28
+ A live demonstration of multilingual Text-Image retrieval using M-CLIP can be found [here!](https://rom1504.github.io/clip-retrieval/?back=https%3A%2F%2Fknn5.laion.ai&index=laion_400m&useMclip=true) This demo was created by [Rom1504](https://github.com/rom1504), and it allows you to search the LAION-400M dataset in various languages using M-CLIP.
29
+
30
+ #### This repository contains
31
+ * Pre-trained CLIP-Text encoders for multiple languages
32
+ * Pytorch & Tensorflow inference code
33
+ * Tensorflow training code
34
+
35
+ ### Requirements
36
+ While it is possible that other versions works equally fine, we have worked with the following:
37
+
38
+ * Python = 3.6.9
39
+ * Transformers = 4.8.1
40
+
41
+ ## Install
42
+
43
+ `pip install multilingual-clip torch`
44
+
45
+ You can also choose to `pip install tensorflow` instead of torch.
46
+
47
+
48
+ ## Inference Usage
49
+
50
+ Inference code for Tensorflow is also available in [inference_example.py](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/inference_example.py)
51
+
52
+ ```python
53
+ from multilingual_clip import pt_multilingual_clip
54
+ import transformers
55
+
56
+ texts = [
57
+ 'Three blind horses listening to Mozart.',
58
+ 'Älgen är skogens konung!',
59
+ 'Wie leben Eisbären in der Antarktis?',
60
+ 'Вы знали, что все белые медведи левши?'
61
+ ]
62
+ model_name = 'M-CLIP/XLM-Roberta-Large-Vit-L-14'
63
+
64
+ # Load Model & Tokenizer
65
+ model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
66
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
67
+
68
+ embeddings = model.forward(texts, tokenizer)
69
+ print(embeddings.shape)
70
+ ```
71
+
72
+ ## Install for development
73
+
74
+ Setup a virtualenv:
75
+
76
+ ```
77
+ python3 -m venv .env
78
+ source .env/bin/activate
79
+ pip install -e .
80
+ ```
81
+
82
+ ## Pre-trained Models
83
+ Every text encoder is a [Huggingface](https://huggingface.co/) available transformer, with an additional linear layer on top. For more information of a specific model, click the Model Name to see its model card.
84
+ <br>
85
+ <br>
86
+
87
+ | Name |Model Base|Vision Model | Vision Dimensions | Pre-trained Languages | #Parameters|
88
+ | ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |
89
+ | [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| [LaBSE](https://huggingface.co/sentence-transformers/LaBSE)| [OpenAI ViT-L/14](https://github.com/openai/CLIP) | 768 | [109 Languages](https://arxiv.org/pdf/2007.01852.pdf) | 110 M|
90
+ | [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| [XLM-Roberta-Large](https://huggingface.co/xlm-roberta-large)| [OpenAI ViT-B/32](https://github.com/openai/CLIP) | 512 | [100 Languages](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr#Introduction) | 344 M|
91
+ | [XLM-R Large Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| [XLM-Roberta-Large](https://huggingface.co/xlm-roberta-large)| [OpenAI ViT-L/14](https://github.com/openai/CLIP) | 768 | [100 Languages](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr#Introduction)| 344 M|
92
+ | [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| [XLM-Roberta-Large](https://huggingface.co/xlm-roberta-large)| [Open CLIP ViT-B-16-plus-240](https://github.com/mlfoundations/open_clip) | 640 | [100 Languages](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr#Introduction)| 344 M|
93
+
94
+ ### Validation & Training Curves
95
+ Following is a table of the <b>Txt2Img @10-Recal</b> for the humanly tanslated [MS-COCO testset](https://arxiv.org/abs/2109.07622).
96
+
97
+ | Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp |
98
+ | ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: |
99
+ | [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - |
100
+ | [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - |
101
+ | [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - |
102
+ | [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 |
103
+ | [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 |
104
+ | [XLM-R Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 |
105
+ | [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| <b>95.0</b> | <b>93.0</b> | <b>93.6</b> | <b>93.1</b> | <b>94.0</b> | <b>93.1</b> | <b>94.4</b> | <b>89.0</b> | <b>90.0</b> | <b>93.0</b> | <b>84.2</b> |
106
+
107
+ The training curves for these models are available at this [Weights and Biases Report](https://wandb.ai/freddefrallan/M-CLIP/reports/M-CLIP-2-6-2022--VmlldzoyMTE1MjU1/edit?firstReport&runsetFilter), the results for other non-succesfull and ongoing experiments can be found in the [Weights and Biases Project](https://wandb.ai/freddefrallan/M-CLIP?workspace=user-freddefrallan).
108
+
109
+ ## Legacy Usage and Models
110
+ Older versions of M-CLIP had the linear weights stored separately from Huggingface. Whilst the new models have them directly incorporated in the Huggingface repository. More information about these older models can be found in this section.
111
+
112
+ <details>
113
+ <summary>Click for more information</summary>
114
+
115
+ ##### Download CLIP Model
116
+ ```bash
117
+ $ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
118
+ $ pip install ftfy regex tqdm
119
+ $ pip install git+https://github.com/openai/CLIP.git
120
+ ```
121
+ Replace `cudatoolkit=11.0` above with the appropriate CUDA version on your machine or `cpuonly` when installing on a machine without a GPU.
122
+ For more information please see the official [CLIP repostitory](https://github.com/openai/CLIP).
123
+ ##### Download Linear Weights
124
+ ```bash
125
+ # Linear Model Weights
126
+ $ bash legacy_get-weights.sh
127
+ ```
128
+
129
+ ### Inference
130
+ ```python
131
+ from multilingual_clip import multilingual_clip
132
+
133
+ print(multilingual_clip.AVAILABLE_MODELS.keys())
134
+
135
+ model = multilingual_clip.load_model('M-BERT-Distil-40')
136
+
137
+ embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?'])
138
+ print(embeddings.shape)
139
+ # Yields: torch.Size([3, 640])
140
+ ```
141
+
142
+ <!--- For a more elaborative example see this [Google Colab](https://colab.research.google.com/github/FreddeFrallan/Multilingual-CLIP/blob/master/Multilingual_CLIP.ipynb). --->
143
+
144
+ For a more elaborate example, comparing the textual embeddings to the CLIP image embeddings see this [colab notebook](https://colab.research.google.com/github/FreddeFrallan/Multilingual-CLIP/blob/master/Multilingual_CLIP.ipynb).
145
+
146
+ <!-- GETTING STARTED -->
147
+ ## Legacy Pre-trained Models
148
+ Every text encoder is a [Huggingface](https://huggingface.co/) available transformer, with an additional linear layer on top. Neither of the models have been extensively tested, but for more information and qualitative test results for a specific model, click the Model Name to see its model card.
149
+ <br>
150
+ <br>
151
+ <b>*** Make sure to update to the most recent version of the repostitory when downloading a new model, and re-run the shell script to download the Linear Weights. *** </b>
152
+
153
+
154
+ | Name |Model Base|Vision Model | Pre-trained Languages | Target Languages | #Parameters|
155
+ | ----------------------------------|:-----: |:-----: |:-----: |:-----: |:-----: |
156
+ |**Multilingual** ||
157
+ | [M-BERT Distil 40](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Distil%2040) | [M-BERT Distil](https://huggingface.co/bert-base-multilingual-uncased)| RN50x4 | [101 Languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) | [40 Languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Distil%2040/Fine-Tune-Languages.md) | 66 M|
158
+ | [M-BERT Base 69](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Base%2069) | [M-BERT Base](https://huggingface.co/bert-base-multilingual-uncased)|RN50x4 | [101 Languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) | 68 Languages | 110 M|
159
+ | [M-BERT Base ViT-B](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Base%20ViT-B) | [M-BERT Base](https://huggingface.co/bert-base-multilingual-uncased)|ViT-B/32 | [101 Languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) | 68 Languages | 110 M|
160
+ |**Monolingual** ||
161
+ |[Swe-CLIP 500k](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/Swe-CLIP%20500k)| [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased)| RN50x4 | Swedish | Swedish | 110 M|
162
+ |[Swe-CLIP 2M](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/Swe-CLIP%202M)| [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased)| RN50x4 | Swedish | Swedish | 110 M|
163
+
164
+ </details>
165
+
166
+ ## Training a new model
167
+ [This folder](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/multilingual_clip/TeacherLearning) contains the code used for training the above models. If you wsh to train your own model you must do the following things:
168
+
169
+ * Prepare a set of translated sentence pairs from English -> Your Language(s)
170
+ * Compute regular CLIP-Text embeddings for the English sentences.
171
+ * Edit [Training.py](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/multilingual_clip/TeacherLearning/Training.py) to load your data.
172
+ * Train a new CLIP-Text encoder via Teacher Learning
173
+
174
+ ### Pre-computed CLIP Embeddings & Translaton Data
175
+ [This Google Drive folder](https://drive.google.com/drive/folders/1I9a7naSZubUATWzLFv61DQMWyFlF7wR5?usp=sharing) contains both pre-computed CLIP-Text Embeddings for a large porton of the the image captions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/).
176
+
177
+ The Google Drive folder also contains the translation data used to train the currently available models.
178
+ Good Luck
179
+
180
+ ## Contribution
181
+ If you have trained a CLIP Text encoder specific to your language, or another model covering a language not supported here, Please feel free to contact us and we will either upload your model and credit you, or simply link to your already uploaded model.
182
+
183
+ <!-- CONTACT -->
184
+ ## Contact
185
+ If you have questions regarding the code or otherwise related to this Github page, please open an [issue](https://github.com/FreddeFrallan/Contrastive-Tension/issues).
186
+
187
+ For other purposes, feel free to contact me directly at: [email protected]
188
+
189
+ <!-- ACKNOWLEDGEMENTS -->
190
+ ## Acknowledgements
191
+ * [Stability.ai](https://stability.ai/) for providing much appreciated compute during training.
192
+ * [CLIP](https://openai.com/blog/clip/)
193
+ * [OpenAI](https://openai.com/)
194
+ * [Huggingface](https://huggingface.co/)
195
+ * [Best Readme Template](https://github.com/othneildrew/Best-README-Template)
196
+ * ["Two Cats" Image by pl1602](https://search.creativecommons.org/photos/8dfd802b-58e5-4cc5-889d-96abba540de1)
197
+
198
+ <!-- LICENSE -->
199
+ ## License
200
+ Distributed under the MIT License. See `LICENSE` for more information.
201
+
202
+ <!-- CITATION -->
203
+ ## Citing
204
+ If you found this repository useful, please consider citing:
205
+
206
+ ```bibtex
207
+ @InProceedings{carlsson-EtAl:2022:LREC,
208
+ author = {Carlsson, Fredrik and Eisen, Philipp and Rekathati, Faton and Sahlgren, Magnus},
209
+ title = {Cross-lingual and Multilingual CLIP},
210
+ booktitle = {Proceedings of the Language Resources and Evaluation Conference},
211
+ month = {June},
212
+ year = {2022},
213
+ address = {Marseille, France},
214
+ publisher = {European Language Resources Association},
215
+ pages = {6848--6854},
216
+ abstract = {The long-standing endeavor of relating the textual and the visual domain recently underwent a pivotal breakthrough, as OpenAI released CLIP. This model distinguishes how well an English text corresponds with a given image with unprecedented accuracy. Trained via a contrastive learning objective over a huge dataset of 400M of images and captions, it is a work that is not easily replicated, especially for low resource languages. Capitalizing on the modularization of the CLIP architecture, we propose to use cross-lingual teacher learning to re-train the textual encoder for various non-English languages. Our method requires no image data and relies entirely on machine translation which removes the need for data in the target language. We find that our method can efficiently train a new textual encoder with relatively low computational cost, whilst still outperforming previous baselines on multilingual image-text retrieval.},
217
+ url = {https://aclanthology.org/2022.lrec-1.739}
218
+ }
219
+ ```
220
+
221
+
222
+ <!-- MARKDOWN LINKS & IMAGES -->
223
+ <!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
224
+ [contributors-shield]: https://img.shields.io/github/contributors/othneildrew/Best-README-Template.svg?style=for-the-badge
225
+ [contributors-url]: https://github.com/othneildrew/Best-README-Template/graphs/contributors
226
+ [forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge
227
+ [forks-url]: https://github.com/othneildrew/Best-README-Template/network/members
228
+ [stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge
229
+ [stars-url]: https://github.com/othneildrew/Best-README-Template/stargazers
230
+ [issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge
231
+ [issues-url]: https://github.com/othneildrew/Best-README-Template/issues
232
+ [license-shield]: https://img.shields.io/github/license/othneildrew/Best-README-Template.svg?style=for-the-badge
233
+ [license-url]: https://github.com/othneildrew/Best-README-Template/blob/master/LICENSE.txt
234
+ [linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555
235
+ [linkedin-url]: https://linkedin.com/in/othneildrew
236
+ [product-screenshot]: images/screenshot.png
Multilingual_CLIP/inference_example.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
+
3
+
4
+ def tf_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'):
5
+ from multilingual_clip import tf_multilingual_clip
6
+
7
+ model = tf_multilingual_clip.MultiLingualCLIP.from_pretrained(model_name)
8
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
9
+
10
+ inData = tokenizer.batch_encode_plus(texts, return_tensors='tf', padding=True)
11
+ embeddings = model(inData)
12
+ print(embeddings.shape)
13
+
14
+
15
+ def pt_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'):
16
+ from multilingual_clip import pt_multilingual_clip
17
+
18
+ model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
19
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
20
+
21
+ embeddings = model.forward(texts, tokenizer)
22
+ print(embeddings.shape)
23
+
24
+
25
+ if __name__ == '__main__':
26
+ exampleTexts = [
27
+ 'Three blind horses listening to Mozart.',
28
+ 'Älgen är skogens konung!',
29
+ 'Wie leben Eisbären in der Antarktis?',
30
+ 'Вы знали, что все белые медведи левши?'
31
+ ]
32
+
33
+ # tf_example(exampleTexts)
34
+ pt_example(exampleTexts)
Multilingual_CLIP/larger_mclip.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Multilingual CLIP 2/6-2022
2
+
3
+ ## Overview
4
+ Recently, OpenAI released some of their [bigger CLIP models](https://github.com/openai/CLIP/blob/main/model-card.md). Additionally, [OpenCLIP](https://github.com/mlfoundations/open_clip) is continuing to provide their large models, which have proven to match or even outperform the OpenAI models.
5
+
6
+ Thanks to the compute provided by [Stability.ai](https://stability.ai/) and [laion.ai](https://laion.ai/), we are now happy to announce that we provide multilingual text encoders for these models!
7
+ Along with:
8
+ - Updated Inference & Training Code
9
+ - The Corresponding Machine Translated Image Caption Dataset
10
+ - PyPi package installer
11
+
12
+ <br>
13
+
14
+ None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following **R@10** results:
15
+ | Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp |
16
+ | ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: |
17
+ | [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - |
18
+ | [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - |
19
+ | [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - |
20
+ | [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 |
21
+ | [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 |
22
+ | [XLM-R Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 |
23
+ | [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| <b>95.0</b> | <b>93.0</b> | <b>93.6</b> | <b>93.1</b> | <b>94.0</b> | <b>93.1</b> | <b>94.4</b> | <b>89.0</b> | <b>90.0</b> | <b>93.0</b> | <b>84.2</b> |
24
+
25
+ To our surprise, using M-CLIP with XLM-RoBerta Large outperforms the original English models for English. Exactly why this is the case reamins to be determined, and we plan to followup up with more extensive testing.
26
+
27
+ The ViT-L/14 model is integrated into clip retrieval, you can test the retrieval capabilities of this multilingual encoder [there](https://rom1504.github.io/clip-retrieval/?useMclip=true&query=%E9%BB%84%E8%89%B2%E3%81%84%E7%8C%AB). This is a search over 5 billion of clip embeddings of laion5B dataset implemented with an efficient knn index.
28
+
29
+ The training curves for these models can be found at the [Weights and Biases report](https://wandb.ai/freddefrallan/M-CLIP/reports/M-CLIP-2-6-2022--VmlldzoyMTE1MjU1/edit?firstReport&runsetFilter)
30
+
31
+ ## Training Data & Machine Translation
32
+ English image captions were taken from the Vit-L filtered captions of the datasets: [CC3M+CC12M+SBU](https://github.com/salesforce/BLIP#pre-training-datasets-download), which are provided by the BLIP repository.
33
+
34
+ From these 14 million captions we sampled 7 million captions, divided them into 48 equally sized buckets, and translated each bucket into one of the [48 target languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/translation/data/fine_tune_languages.csv). This means that after translation we still end up with a total of 7 million captions. Where 7M/48 = 145,833 of them are in for example Dutch.
35
+ The machine-translated captions are available at [Huggingface](https://huggingface.co/datasets/M-CLIP/ImageCaptions-7M-Translations).
36
+
37
+ Each translation was performed with the corresponding Opus model. For more information see the [machine translation instructions](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/translation).
38
+
39
+ It should be noted that only translated captions were used during training. Meaning that none of the original English captions were included. This entails that all the English (and other languages not included in the 49 target languages) results are due to transfer learning.
40
+
41
+ ## Training Details
42
+ All released models used in essence the same hyperparameters. These detail are available at [Weights and Biases project](https://wandb.ai/freddefrallan/M-CLIP?workspace=user-freddefrallan).
43
+
44
+ Following is a short list of some of the shared hyperparameters:
45
+ - Batch size of 2048 samples.
46
+ - Adam Optimizer with a target learning rate of 10^-5, with a linear warmup schedule for 1k update steps.
47
+ - 5000 randomly sampled validation samples
48
+
49
+ All models were allowed to train until the validation MSE loss had converged. For most models this took about 24 hours, using 8 Nvidia A-100 GPUs. No early stopping was performed in regard to the Image-Text retrieval tasks.
50
+
51
+ ## Additional Experiments
52
+ In addition to the released models, we also performed some experiments that yielded negative or unsubstantial results. The training curves and specific settings for most of these additional experiments can be found at the [Weights and Biases project](https://wandb.ai/freddefrallan/M-CLIP?workspace=user-freddefrallan).
53
+
54
+ Following is a summary of things we tried:
55
+
56
+ - Optimizing the Cosine-Similarity instead of minimizing the mean-squared error: **No noticeable performance difference**.
57
+ - MBERT-BASE as encoder: **Worse performance than LaBSE**
58
+ - USE-CML: **Worse performance than LaBSE**
59
+ - Adding additional TanH layer to the XLM-R Large: **No substantial performance difference, although it achieved slightly faster learning at the start.**
60
+ - Using first *([CLS]?)* token as sentence embedding, instead of mean-pooling for XLM-R Large: **Significantly worse performance. *(Perhaps due to the lack of Next-Sentence Prediction task in the RoBerta pre-training?)***
Multilingual_CLIP/legacy_get-weights.sh ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+
3
+ OUTPATH=$PWD/data/weights
4
+
5
+ mkdir -p $OUTPATH
6
+
7
+ URLSWECLIP=https://www.dropbox.com/s/s77xw5308jeljlp/Swedish-500k%20Linear%20Weights.pkl
8
+ wget -c "${URLSWECLIP}" -P $OUTPATH
9
+
10
+ URLSWECLIP2M=https://www.dropbox.com/s/82c54rsvlry3kwh/Swedish-2M%20Linear%20Weights.pkl
11
+ wget -c "${URLSWECLIP2M}" -P $OUTPATH
12
+
13
+ URLMCLIP=https://www.dropbox.com/s/oihqzctnty5e9kk/M-BERT%20Distil%2040%20Linear%20Weights.pkl
14
+ wget -c "${URLMCLIP}" -P $OUTPATH
15
+
16
+ URLMCLIPBASE=https://www.dropbox.com/s/y4pycinv0eapeb3/M-BERT-Base-69%20Linear%20Weights.pkl
17
+ wget -c "${URLMCLIPBASE}" -P $OUTPATH
18
+
19
+ URLMCLIPBASEVIT=https://www.dropbox.com/s/2oxu7hw0y9fwdqs/M-BERT-Base-69-ViT%20Linear%20Weights.pkl
20
+ wget -c "${URLMCLIPBASEVIT}" -P $OUTPATH
Multilingual_CLIP/legacy_inference.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from multilingual_clip.legacy_multilingual_clip import MultilingualClip
2
+
3
+ model_path = 'M-CLIP/Swedish-500k'
4
+ tok_path = 'M-CLIP/Swedish-500k'
5
+ head_weight_path = 'data/weights/Swe-CLIP Linear Weights.pkl'
6
+
7
+ sweclip_args = {'model_name': model_path,
8
+ 'tokenizer_name': tok_path,
9
+ 'head_path': head_weight_path}
10
+
11
+ sweclip = MultilingualClip(**sweclip_args)
12
+
13
+ print(sweclip('test'))