medmac01
Added multilingual_clip module
3bd5293
raw
history blame
2.85 kB
import Dataset, TrainingModel
import tensorflow as tf
import transformers
import datasets
import Utils
def loadTextTranslations():
return datasets.load_dataset('M-CLIP/ImageCaptions-7M-Translations')['train']
def loadTargetEmbeddings(imageBase="Vit-B-32", validationSize=5000):
trainSamples = datasets.load_dataset('M-CLIP/ImageCaptions-7M-Embeddings', imageBase,
split='train[{}:]'.format(validationSize))
valSamples = datasets.load_dataset('M-CLIP/ImageCaptions-7M-Embeddings', imageBase,
split='train[:{}]'.format(validationSize))
embeddingShape = tf.convert_to_tensor(trainSamples[0]['embedding']).shape
return trainSamples, valSamples, embeddingShape
def singleGPUTraining():
numValidationSamples = 5000
stepsPerEpoch, lr = 1000, 0.00001
gradAccumSteps, batchSize = 1, 256
numTrainSteps, numWarmupSteps = 99999999, 1000
modelBase = 'xlm-roberta-large'
tokenizerBase = 'xlm-roberta-large'
imageBase = "Vit-B-32"
modelName = '{}-{}'.format(modelBase, imageBase)
startWeights = None
targetCaptions = loadTextTranslations()
trainEmbeddings, valEmbeddings, imageEncoderDimensions = loadTargetEmbeddings(validationSize=numValidationSamples)
def createOptimizerFunc():
optimizer, schedule = transformers.optimization_tf.create_optimizer(lr, numTrainSteps, numWarmupSteps)
if (gradAccumSteps <= 1):
return optimizer
else:
return Utils.GradientAccumulator(optimizer, gradAccumSteps)
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizerBase)
model = TrainingModel.SentenceModelWithLinearTransformation(modelBase, imageEncoderDimensions[-1])
if (startWeights is not None):
model.load_weights(startWeights)
model.compile(createOptimizerFunc(), 'mse', metrics=['mae', 'cosine_similarity'])
trainDataset, valDataset = Dataset.createTrainingAndValidationDataset(trainEmbeddings, valEmbeddings, batchSize,
tokenizer,
targetCaptions=targetCaptions,
encoderDims=imageEncoderDimensions)
if (gradAccumSteps > 1): # In order to make fair logging on Wandb
stepsPerEpoch *= gradAccumSteps
model.fit(trainDataset, epochs=1000, steps_per_epoch=stepsPerEpoch,
validation_data=valDataset,
callbacks=[
Utils.CustomSaveCallBack(modelName, saveInterval=5, firstSavePoint=5),
]
)
if __name__ == '__main__':
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
singleGPUTraining()