medmac01
Added multilingual_clip module
3bd5293
raw
history blame
1.13 kB
import transformers
def tf_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'):
from multilingual_clip import tf_multilingual_clip
model = tf_multilingual_clip.MultiLingualCLIP.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
inData = tokenizer.batch_encode_plus(texts, return_tensors='tf', padding=True)
embeddings = model(inData)
print(embeddings.shape)
def pt_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'):
from multilingual_clip import pt_multilingual_clip
model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
embeddings = model.forward(texts, tokenizer)
print(embeddings.shape)
if __name__ == '__main__':
exampleTexts = [
'Three blind horses listening to Mozart.',
'Älgen är skogens konung!',
'Wie leben Eisbären in der Antarktis?',
'Вы знали, что все белые медведи левши?'
]
# tf_example(exampleTexts)
pt_example(exampleTexts)