|
import os |
|
import random |
|
import uuid |
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler |
|
from typing import Tuple |
|
|
|
|
|
css = ''' |
|
.gradio-container{max-width: 575px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
''' |
|
|
|
DESCRIPTION = """ |
|
## Text-to-Image Generator 🚀 |
|
Create stunning images from text prompts using Stable Diffusion XL. Explore high-quality styles and customizable options. |
|
""" |
|
|
|
|
|
examples = [ |
|
"A beautiful sunset over the ocean, ultra-realistic, high resolution", |
|
"A futuristic cityscape with flying cars, cyberpunk theme, vibrant colors", |
|
"A cozy cabin in the woods during winter, detailed and realistic", |
|
"A magical forest with glowing plants and creatures, fantasy art", |
|
] |
|
|
|
|
|
MODEL_OPTIONS = { |
|
"LIGHTNING V5.0": "SG161222/RealVisXL_V5.0_Lightning", |
|
"LIGHTNING V4.0": "SG161222/RealVisXL_V4.0_Lightning", |
|
} |
|
|
|
|
|
style_list = [ |
|
{ |
|
"name": "Ultra HD", |
|
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "4K Realistic", |
|
"prompt": "realistic 4K image of {prompt}. sharp, detailed, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, blurry, low resolution", |
|
}, |
|
{ |
|
"name": "Minimal Style", |
|
"prompt": "{prompt}, clean, minimalistic", |
|
"negative_prompt": "", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
DEFAULT_STYLE_NAME = "Ultra HD" |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
MAX_IMAGE_SIZE = 4096 |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
def load_and_prepare_model(model_id): |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
).to(device) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
return pipe |
|
|
|
|
|
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()} |
|
|
|
|
|
def generate_image( |
|
model_choice: str, |
|
prompt: str, |
|
negative_prompt: str, |
|
style_name: str, |
|
width: int, |
|
height: int, |
|
guidance_scale: float, |
|
num_steps: int, |
|
num_images: int, |
|
randomize_seed: bool, |
|
seed: int, |
|
): |
|
|
|
positive_style, negative_style = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
styled_prompt = positive_style.replace("{prompt}", prompt) |
|
styled_negative_prompt = negative_style + (negative_prompt if negative_prompt else "") |
|
|
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
pipe = models[model_choice] |
|
images = pipe( |
|
prompt=[styled_prompt] * num_images, |
|
negative_prompt=[styled_negative_prompt] * num_images, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_steps, |
|
generator=generator, |
|
output_type="pil", |
|
).images |
|
|
|
|
|
image_paths = [] |
|
for img in images: |
|
unique_name = f"{uuid.uuid4()}.png" |
|
img.save(unique_name) |
|
image_paths.append(unique_name) |
|
|
|
return image_paths, seed |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Row(): |
|
model_choice = gr.Dropdown( |
|
label="Select Model", |
|
choices=list(MODEL_OPTIONS.keys()), |
|
value="LIGHTNING V5.0", |
|
) |
|
|
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Enter your creative prompt here...", |
|
) |
|
|
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
placeholder="Optional: Add details you want to avoid...", |
|
value="blurry, deformed, low-quality, cartoonish", |
|
) |
|
|
|
style_name = gr.Radio( |
|
label="Style", |
|
choices=list(styles.keys()), |
|
value=DEFAULT_STYLE_NAME, |
|
) |
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
width = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024) |
|
height = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024) |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=20, |
|
step=0.5, |
|
value=7.5, |
|
) |
|
num_steps = gr.Slider( |
|
label="Steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=25, |
|
) |
|
num_images = gr.Slider( |
|
label="Number of Images", |
|
minimum=1, |
|
maximum=5, |
|
step=1, |
|
value=1, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) |
|
|
|
with gr.Row(): |
|
run_button = gr.Button("Generate Images") |
|
result_gallery = gr.Gallery(label="Generated Images", show_label=False) |
|
|
|
run_button.click( |
|
generate_image, |
|
inputs=[ |
|
model_choice, |
|
prompt, |
|
negative_prompt, |
|
style_name, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_steps, |
|
num_images, |
|
randomize_seed, |
|
seed, |
|
], |
|
outputs=[result_gallery, seed], |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=50).launch() |
|
|