init
Browse files- app.py +207 -0
- index.html +0 -19
- main.py +119 -0
- requirement.txt +154 -0
- style.css +0 -28
app.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
9 |
+
from typing import Tuple
|
10 |
+
|
11 |
+
# CSS for Gradio Interface
|
12 |
+
css = '''
|
13 |
+
.gradio-container{max-width: 575px !important}
|
14 |
+
h1{text-align:center}
|
15 |
+
footer {
|
16 |
+
visibility: hidden
|
17 |
+
}
|
18 |
+
'''
|
19 |
+
|
20 |
+
DESCRIPTION = """
|
21 |
+
## Text-to-Image Generator 🚀
|
22 |
+
Create stunning images from text prompts using Stable Diffusion XL. Explore high-quality styles and customizable options.
|
23 |
+
"""
|
24 |
+
|
25 |
+
# Example Prompts
|
26 |
+
examples = [
|
27 |
+
"A beautiful sunset over the ocean, ultra-realistic, high resolution",
|
28 |
+
"A futuristic cityscape with flying cars, cyberpunk theme, vibrant colors",
|
29 |
+
"A cozy cabin in the woods during winter, detailed and realistic",
|
30 |
+
"A magical forest with glowing plants and creatures, fantasy art",
|
31 |
+
]
|
32 |
+
|
33 |
+
# Model Configurations
|
34 |
+
MODEL_OPTIONS = {
|
35 |
+
"LIGHTNING V5.0": "SG161222/RealVisXL_V5.0_Lightning",
|
36 |
+
"LIGHTNING V4.0": "SG161222/RealVisXL_V4.0_Lightning",
|
37 |
+
}
|
38 |
+
|
39 |
+
# Define Styles
|
40 |
+
style_list = [
|
41 |
+
{
|
42 |
+
"name": "Ultra HD",
|
43 |
+
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
44 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"name": "4K Realistic",
|
48 |
+
"prompt": "realistic 4K image of {prompt}. sharp, detailed, vibrant colors, photorealistic",
|
49 |
+
"negative_prompt": "cartoonish, blurry, low resolution",
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"name": "Minimal Style",
|
53 |
+
"prompt": "{prompt}, clean, minimalistic",
|
54 |
+
"negative_prompt": "",
|
55 |
+
},
|
56 |
+
]
|
57 |
+
|
58 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
59 |
+
DEFAULT_STYLE_NAME = "Ultra HD"
|
60 |
+
|
61 |
+
# Define Global Variables
|
62 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
63 |
+
MAX_IMAGE_SIZE = 4096
|
64 |
+
MAX_SEED = np.iinfo(np.int32).max
|
65 |
+
|
66 |
+
# Load Model Function
|
67 |
+
def load_and_prepare_model(model_id):
|
68 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
69 |
+
model_id,
|
70 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
71 |
+
).to(device)
|
72 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
73 |
+
return pipe
|
74 |
+
|
75 |
+
# Load Models
|
76 |
+
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
77 |
+
|
78 |
+
# Generate Function
|
79 |
+
def generate_image(
|
80 |
+
model_choice: str,
|
81 |
+
prompt: str,
|
82 |
+
negative_prompt: str,
|
83 |
+
style_name: str,
|
84 |
+
width: int,
|
85 |
+
height: int,
|
86 |
+
guidance_scale: float,
|
87 |
+
num_steps: int,
|
88 |
+
num_images: int,
|
89 |
+
randomize_seed: bool,
|
90 |
+
seed: int,
|
91 |
+
):
|
92 |
+
# Apply Style
|
93 |
+
positive_style, negative_style = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
94 |
+
styled_prompt = positive_style.replace("{prompt}", prompt)
|
95 |
+
styled_negative_prompt = negative_style + (negative_prompt if negative_prompt else "")
|
96 |
+
|
97 |
+
# Randomize Seed if Enabled
|
98 |
+
if randomize_seed:
|
99 |
+
seed = random.randint(0, MAX_SEED)
|
100 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
101 |
+
|
102 |
+
# Generate Images
|
103 |
+
pipe = models[model_choice]
|
104 |
+
images = pipe(
|
105 |
+
prompt=[styled_prompt] * num_images,
|
106 |
+
negative_prompt=[styled_negative_prompt] * num_images,
|
107 |
+
width=width,
|
108 |
+
height=height,
|
109 |
+
guidance_scale=guidance_scale,
|
110 |
+
num_inference_steps=num_steps,
|
111 |
+
generator=generator,
|
112 |
+
output_type="pil",
|
113 |
+
).images
|
114 |
+
|
115 |
+
# Save and Return Images
|
116 |
+
image_paths = []
|
117 |
+
for img in images:
|
118 |
+
unique_name = f"{uuid.uuid4()}.png"
|
119 |
+
img.save(unique_name)
|
120 |
+
image_paths.append(unique_name)
|
121 |
+
|
122 |
+
return image_paths, seed
|
123 |
+
|
124 |
+
# Gradio Interface
|
125 |
+
with gr.Blocks(css=css) as demo:
|
126 |
+
gr.Markdown(DESCRIPTION)
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
model_choice = gr.Dropdown(
|
130 |
+
label="Select Model",
|
131 |
+
choices=list(MODEL_OPTIONS.keys()),
|
132 |
+
value="LIGHTNING V5.0",
|
133 |
+
)
|
134 |
+
|
135 |
+
prompt = gr.Textbox(
|
136 |
+
label="Prompt",
|
137 |
+
placeholder="Enter your creative prompt here...",
|
138 |
+
)
|
139 |
+
|
140 |
+
negative_prompt = gr.Textbox(
|
141 |
+
label="Negative Prompt",
|
142 |
+
placeholder="Optional: Add details you want to avoid...",
|
143 |
+
value="blurry, deformed, low-quality, cartoonish",
|
144 |
+
)
|
145 |
+
|
146 |
+
style_name = gr.Radio(
|
147 |
+
label="Style",
|
148 |
+
choices=list(styles.keys()),
|
149 |
+
value=DEFAULT_STYLE_NAME,
|
150 |
+
)
|
151 |
+
|
152 |
+
with gr.Accordion("Advanced Options", open=False):
|
153 |
+
width = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024)
|
154 |
+
height = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
|
155 |
+
guidance_scale = gr.Slider(
|
156 |
+
label="Guidance Scale",
|
157 |
+
minimum=1,
|
158 |
+
maximum=20,
|
159 |
+
step=0.5,
|
160 |
+
value=7.5,
|
161 |
+
)
|
162 |
+
num_steps = gr.Slider(
|
163 |
+
label="Steps",
|
164 |
+
minimum=1,
|
165 |
+
maximum=50,
|
166 |
+
step=1,
|
167 |
+
value=25,
|
168 |
+
)
|
169 |
+
num_images = gr.Slider(
|
170 |
+
label="Number of Images",
|
171 |
+
minimum=1,
|
172 |
+
maximum=5,
|
173 |
+
step=1,
|
174 |
+
value=1,
|
175 |
+
)
|
176 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
177 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
178 |
+
|
179 |
+
with gr.Row():
|
180 |
+
run_button = gr.Button("Generate Images")
|
181 |
+
result_gallery = gr.Gallery(label="Generated Images", show_label=False)
|
182 |
+
|
183 |
+
run_button.click(
|
184 |
+
generate_image,
|
185 |
+
inputs=[
|
186 |
+
model_choice,
|
187 |
+
prompt,
|
188 |
+
negative_prompt,
|
189 |
+
style_name,
|
190 |
+
width,
|
191 |
+
height,
|
192 |
+
guidance_scale,
|
193 |
+
num_steps,
|
194 |
+
num_images,
|
195 |
+
randomize_seed,
|
196 |
+
seed,
|
197 |
+
],
|
198 |
+
outputs=[result_gallery, seed],
|
199 |
+
)
|
200 |
+
|
201 |
+
gr.Examples(
|
202 |
+
examples=examples,
|
203 |
+
inputs=prompt,
|
204 |
+
)
|
205 |
+
|
206 |
+
if __name__ == "__main__":
|
207 |
+
demo.queue(max_size=50).launch()
|
index.html
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
<!doctype html>
|
2 |
-
<html>
|
3 |
-
<head>
|
4 |
-
<meta charset="utf-8" />
|
5 |
-
<meta name="viewport" content="width=device-width" />
|
6 |
-
<title>My static Space</title>
|
7 |
-
<link rel="stylesheet" href="style.css" />
|
8 |
-
</head>
|
9 |
-
<body>
|
10 |
-
<div class="card">
|
11 |
-
<h1>Welcome to your static Space!</h1>
|
12 |
-
<p>You can modify this app directly by editing <i>index.html</i> in the Files and versions tab.</p>
|
13 |
-
<p>
|
14 |
-
Also don't forget to check the
|
15 |
-
<a href="https://huggingface.co/docs/hub/spaces" target="_blank">Spaces documentation</a>.
|
16 |
-
</p>
|
17 |
-
</div>
|
18 |
-
</body>
|
19 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
model1 = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
7 |
+
feature_extractor1 = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
+
tokenizer1 = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
9 |
+
|
10 |
+
device1 = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model1.to(device1)
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
max_length = 16
|
16 |
+
num_beams = 4
|
17 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
18 |
+
|
19 |
+
def image_to_text_model_1(image_url):
|
20 |
+
raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
|
21 |
+
|
22 |
+
pixel_values = feature_extractor1(images=[raw_image], return_tensors="pt").pixel_values
|
23 |
+
pixel_values = pixel_values.to(device1)
|
24 |
+
|
25 |
+
output_ids = model1.generate(pixel_values, **gen_kwargs)
|
26 |
+
|
27 |
+
preds = tokenizer1.batch_decode(output_ids, skip_special_tokens=True)
|
28 |
+
preds = [pred.strip() for pred in preds]
|
29 |
+
return preds
|
30 |
+
|
31 |
+
def bytes_to_text_model_1(bts):
|
32 |
+
pixel_values = feature_extractor1(images=[bts], return_tensors="pt").pixel_values
|
33 |
+
pixel_values = pixel_values.to(device1)
|
34 |
+
|
35 |
+
output_ids = model1.generate(pixel_values, **gen_kwargs)
|
36 |
+
|
37 |
+
preds = tokenizer1.batch_decode(output_ids, skip_special_tokens=True)
|
38 |
+
preds = [pred.strip() for pred in preds]
|
39 |
+
print(preds[0])
|
40 |
+
|
41 |
+
|
42 |
+
import requests
|
43 |
+
from PIL import Image
|
44 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
45 |
+
import torch
|
46 |
+
|
47 |
+
device2 = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
48 |
+
processor2 = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
49 |
+
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap").to(device2)
|
50 |
+
|
51 |
+
|
52 |
+
def image_to_text_model_2(img_url):
|
53 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
54 |
+
text = "a picture of "
|
55 |
+
inputs = processor2(raw_image, text, return_tensors="pt").to(device2)
|
56 |
+
|
57 |
+
out = model2.generate(**inputs, num_beams = 3)
|
58 |
+
print(processor2.decode(out[0], skip_special_tokens=True))
|
59 |
+
|
60 |
+
def bytes_to_text_model_2(byts):
|
61 |
+
text = "a picture of "
|
62 |
+
inputs = processor2(byts, text, return_tensors="pt").to(device2)
|
63 |
+
|
64 |
+
out = model2.generate(**inputs, num_beams = 3)
|
65 |
+
print(processor2.decode(out[0], skip_special_tokens=True))
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
import requests
|
70 |
+
from PIL import Image
|
71 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
72 |
+
|
73 |
+
processor3 = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
74 |
+
model3 = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
75 |
+
|
76 |
+
def image_to_text_model_3(img_url):
|
77 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
78 |
+
text = "a picture of"
|
79 |
+
inputs = processor3(raw_image, text, return_tensors="pt")
|
80 |
+
inputs = processor3(raw_image, return_tensors="pt")
|
81 |
+
|
82 |
+
out = model3.generate(**inputs)
|
83 |
+
print(processor3.decode(out[0], skip_special_tokens=True))
|
84 |
+
|
85 |
+
def bytes_to_text_model_3(byts):
|
86 |
+
text = "a picture of"
|
87 |
+
inputs = processor3(byts, text, return_tensors="pt")
|
88 |
+
inputs = processor3(byts, return_tensors="pt")
|
89 |
+
|
90 |
+
out = model3.generate(**inputs)
|
91 |
+
print(processor3.decode(out[0], skip_special_tokens=True))
|
92 |
+
|
93 |
+
|
94 |
+
import cv2
|
95 |
+
|
96 |
+
def FrameCapture(path):
|
97 |
+
vidObj = cv2.VideoCapture(path)
|
98 |
+
count = 0
|
99 |
+
success = 1
|
100 |
+
|
101 |
+
while success:
|
102 |
+
success, image = vidObj.read()
|
103 |
+
|
104 |
+
if count % 20 == 0:
|
105 |
+
|
106 |
+
print("NEW FRAME")
|
107 |
+
print("MODEL 1")
|
108 |
+
bytes_to_text_model_1(image)
|
109 |
+
print("MODEL 2")
|
110 |
+
bytes_to_text_model_2(image)
|
111 |
+
print("MODEL 3")
|
112 |
+
bytes_to_text_model_3(image)
|
113 |
+
|
114 |
+
print("\n\n")
|
115 |
+
|
116 |
+
count += 1
|
117 |
+
|
118 |
+
|
119 |
+
FrameCapture("animation.mp4")
|
requirement.txt
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.6.2.post1
|
4 |
+
appnope==0.1.4
|
5 |
+
argon2-cffi==23.1.0
|
6 |
+
argon2-cffi-bindings==21.2.0
|
7 |
+
arrow==1.3.0
|
8 |
+
asttokens==2.4.1
|
9 |
+
async-lru==2.0.4
|
10 |
+
attrs==24.2.0
|
11 |
+
babel==2.16.0
|
12 |
+
beautifulsoup4==4.12.3
|
13 |
+
bleach==6.2.0
|
14 |
+
blinker==1.9.0
|
15 |
+
certifi==2024.8.30
|
16 |
+
cffi==1.17.1
|
17 |
+
charset-normalizer==3.4.0
|
18 |
+
click==8.1.7
|
19 |
+
comm==0.2.2
|
20 |
+
contourpy==1.3.0
|
21 |
+
cycler==0.12.1
|
22 |
+
debugpy==1.8.8
|
23 |
+
decorator==5.1.1
|
24 |
+
defusedxml==0.7.1
|
25 |
+
diffusers==0.31.0
|
26 |
+
exceptiongroup==1.2.2
|
27 |
+
executing==2.1.0
|
28 |
+
fastapi==0.115.6
|
29 |
+
fastjsonschema==2.20.0
|
30 |
+
ffmpy==0.4.0
|
31 |
+
filelock==3.16.1
|
32 |
+
Flask==3.1.0
|
33 |
+
fonttools==4.55.2
|
34 |
+
fqdn==1.5.1
|
35 |
+
fsspec==2024.10.0
|
36 |
+
gradio==4.44.1
|
37 |
+
gradio_client==1.3.0
|
38 |
+
h11==0.14.0
|
39 |
+
httpcore==1.0.6
|
40 |
+
httpx==0.27.2
|
41 |
+
huggingface-hub==0.26.3
|
42 |
+
idna==3.10
|
43 |
+
importlib_metadata==8.5.0
|
44 |
+
importlib_resources==6.4.5
|
45 |
+
ipykernel==6.29.5
|
46 |
+
ipython==8.18.1
|
47 |
+
isoduration==20.11.0
|
48 |
+
itsdangerous==2.2.0
|
49 |
+
jedi==0.19.2
|
50 |
+
Jinja2==3.1.4
|
51 |
+
joblib==1.4.2
|
52 |
+
json5==0.9.28
|
53 |
+
jsonpointer==3.0.0
|
54 |
+
jsonschema==4.23.0
|
55 |
+
jsonschema-specifications==2024.10.1
|
56 |
+
jupyter-events==0.10.0
|
57 |
+
jupyter-lsp==2.2.5
|
58 |
+
jupyter_client==8.6.3
|
59 |
+
jupyter_core==5.7.2
|
60 |
+
jupyter_server==2.14.2
|
61 |
+
jupyter_server_terminals==0.5.3
|
62 |
+
jupyterlab==4.3.0
|
63 |
+
jupyterlab_pygments==0.3.0
|
64 |
+
jupyterlab_server==2.27.3
|
65 |
+
kiwisolver==1.4.7
|
66 |
+
markdown-it-py==3.0.0
|
67 |
+
MarkupSafe==2.1.5
|
68 |
+
matplotlib==3.9.3
|
69 |
+
matplotlib-inline==0.1.7
|
70 |
+
mdurl==0.1.2
|
71 |
+
mistune==3.0.2
|
72 |
+
mpmath==1.3.0
|
73 |
+
nbclient==0.10.0
|
74 |
+
nbconvert==7.16.4
|
75 |
+
nbformat==5.10.4
|
76 |
+
nest-asyncio==1.6.0
|
77 |
+
networkx==3.2.1
|
78 |
+
nltk==3.9.1
|
79 |
+
notebook_shim==0.2.4
|
80 |
+
numpy==2.0.2
|
81 |
+
opencv-python==4.10.0.84
|
82 |
+
orjson==3.10.12
|
83 |
+
overrides==7.7.0
|
84 |
+
packaging==24.2
|
85 |
+
pandas==2.2.3
|
86 |
+
pandocfilters==1.5.1
|
87 |
+
parso==0.8.4
|
88 |
+
pexpect==4.9.0
|
89 |
+
pillow==10.4.0
|
90 |
+
pipeline==0.1.0
|
91 |
+
platformdirs==4.3.6
|
92 |
+
prometheus_client==0.21.0
|
93 |
+
prompt_toolkit==3.0.48
|
94 |
+
psutil==6.1.0
|
95 |
+
ptyprocess==0.7.0
|
96 |
+
pure_eval==0.2.3
|
97 |
+
pycparser==2.22
|
98 |
+
pydantic==2.10.3
|
99 |
+
pydantic_core==2.27.1
|
100 |
+
pydub==0.25.1
|
101 |
+
Pygments==2.18.0
|
102 |
+
pyparsing==3.2.0
|
103 |
+
python-dateutil==2.9.0.post0
|
104 |
+
python-json-logger==2.0.7
|
105 |
+
python-multipart==0.0.19
|
106 |
+
pytz==2024.2
|
107 |
+
PyYAML==6.0.2
|
108 |
+
pyzmq==26.2.0
|
109 |
+
referencing==0.35.1
|
110 |
+
regex==2024.11.6
|
111 |
+
requests==2.32.3
|
112 |
+
rfc3339-validator==0.1.4
|
113 |
+
rfc3986-validator==0.1.1
|
114 |
+
rich==13.9.4
|
115 |
+
rpds-py==0.21.0
|
116 |
+
ruff==0.8.2
|
117 |
+
safetensors==0.4.5
|
118 |
+
scikit-learn==1.5.2
|
119 |
+
scipy==1.13.1
|
120 |
+
semantic-version==2.10.0
|
121 |
+
Send2Trash==1.8.3
|
122 |
+
shellingham==1.5.4
|
123 |
+
six==1.16.0
|
124 |
+
sklearn==0.0
|
125 |
+
sniffio==1.3.1
|
126 |
+
soupsieve==2.6
|
127 |
+
stack-data==0.6.3
|
128 |
+
starlette==0.41.3
|
129 |
+
sympy==1.13.1
|
130 |
+
terminado==0.18.1
|
131 |
+
threadpoolctl==3.5.0
|
132 |
+
tinycss2==1.4.0
|
133 |
+
tokenizers==0.21.0
|
134 |
+
tomli==2.1.0
|
135 |
+
tomlkit==0.12.0
|
136 |
+
torch==2.5.1
|
137 |
+
tornado==6.4.1
|
138 |
+
tqdm==4.67.0
|
139 |
+
traitlets==5.14.3
|
140 |
+
transformers==4.47.0
|
141 |
+
typer==0.15.1
|
142 |
+
types-python-dateutil==2.9.0.20241003
|
143 |
+
typing_extensions==4.12.2
|
144 |
+
tzdata==2024.2
|
145 |
+
uri-template==1.3.0
|
146 |
+
urllib3==2.2.3
|
147 |
+
uvicorn==0.32.1
|
148 |
+
wcwidth==0.2.13
|
149 |
+
webcolors==24.11.1
|
150 |
+
webencodings==0.5.1
|
151 |
+
websocket-client==1.8.0
|
152 |
+
websockets==12.0
|
153 |
+
Werkzeug==3.1.3
|
154 |
+
zipp==3.21.0
|
style.css
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
body {
|
2 |
-
padding: 2rem;
|
3 |
-
font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
|
4 |
-
}
|
5 |
-
|
6 |
-
h1 {
|
7 |
-
font-size: 16px;
|
8 |
-
margin-top: 0;
|
9 |
-
}
|
10 |
-
|
11 |
-
p {
|
12 |
-
color: rgb(107, 114, 128);
|
13 |
-
font-size: 15px;
|
14 |
-
margin-bottom: 10px;
|
15 |
-
margin-top: 5px;
|
16 |
-
}
|
17 |
-
|
18 |
-
.card {
|
19 |
-
max-width: 620px;
|
20 |
-
margin: 0 auto;
|
21 |
-
padding: 16px;
|
22 |
-
border: 1px solid lightgray;
|
23 |
-
border-radius: 16px;
|
24 |
-
}
|
25 |
-
|
26 |
-
.card p:last-child {
|
27 |
-
margin-bottom: 0;
|
28 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|