Spaces:
Running
Running
# find_related.py | |
import os | |
import pickle | |
import re | |
import torch | |
import threading | |
from datetime import datetime, timedelta | |
from enum import Enum | |
from sentence_transformers import SentenceTransformer, util | |
from fastapi import APIRouter | |
try: | |
from .utils_gitea import gitea_fetch_issues, gitea_json_issue_get | |
except: | |
from utils_gitea import gitea_fetch_issues, gitea_json_issue_get | |
def _create_issue_string(title, body): | |
cleaned_body = body.replace('\r', '') | |
cleaned_body = cleaned_body.replace('**System Information**\n', '') | |
cleaned_body = cleaned_body.replace('**Blender Version**\n', '') | |
cleaned_body = cleaned_body.replace( | |
'Worked: (newest version of Blender that worked as expected)\n', '') | |
cleaned_body = cleaned_body.replace('**Short description of error**\n', '') | |
cleaned_body = cleaned_body.replace('**Addon Information**\n', '') | |
cleaned_body = cleaned_body.replace( | |
'**Exact steps for others to reproduce the error**\n', '') | |
cleaned_body = cleaned_body.replace( | |
'[Please describe the exact steps needed to reproduce the issue]\n', '') | |
cleaned_body = cleaned_body.replace( | |
'[Please fill out a short description of the error here]\n', '') | |
cleaned_body = cleaned_body.replace( | |
'[Based on the default startup or an attached .blend file (as simple as possible)]\n', '') | |
cleaned_body = re.sub( | |
r', branch: .+?, commit date: \d{4}-\d{2}-\d{2} \d{2}:\d{2}, hash: `.+?`', '', cleaned_body) | |
cleaned_body = re.sub( | |
r'\/?attachments\/[a-zA-Z0-9\-]+', 'attachment', cleaned_body) | |
cleaned_body = re.sub( | |
r'https?:\/\/[^\s/]+(?:\/[^\s/]+)*\/([^\s/]+)', lambda match: match.group(1), cleaned_body) | |
return title + '\n' + cleaned_body | |
def _find_latest_date(issues, default_str=None): | |
# Handle the case where 'issues' is empty | |
if not issues: | |
return default_str | |
return max((issue['updated_at'] for issue in issues), default=default_str) | |
class EmbeddingContext: | |
# These don't change | |
TOKEN_LEN_MAX_FOR_EMBEDDING = 512 | |
TOKEN_LEN_MAX_BALCKLIST = 2 * TOKEN_LEN_MAX_FOR_EMBEDDING | |
ARRAY_CHUNK_SIZE = 4096 | |
issue_attr_filter = {'number', 'title', 'body', 'state', 'updated_at'} | |
cache_path = "routers/tool_find_related_cache.pkl" | |
# Set when creating the object | |
lock = None | |
model = None | |
openai_client = None | |
model_name = '' | |
config_type = '' | |
embedding_shape = None | |
embedding_dtype = None | |
embedding_device = None | |
# Updates constantly | |
data = {} | |
black_list = {'blender': {109399, 113157, 114706}, | |
'blender-addons': set()} | |
def __init__(self): | |
self.lock = threading.Lock() | |
try: | |
from config import settings | |
except: | |
import sys | |
sys.path.append(os.path.abspath( | |
os.path.join(os.path.dirname(__file__), '..'))) | |
from config import settings | |
config_type = settings.embedding_api | |
model_name = settings.embedding_model | |
if config_type == 'sbert': | |
self.model = SentenceTransformer(model_name, use_auth_token=False) | |
self.model.max_seq_length = self.TOKEN_LEN_MAX_FOR_EMBEDDING | |
print("Max Sequence Length:", self.model.max_seq_length) | |
self.encode = self.encode_sbert | |
if torch.cuda.is_available(): | |
self.model = self.model.to('cuda') | |
elif config_type == 'openai': | |
from openai import OpenAI | |
self.openai_client = OpenAI( | |
# base_url = settings.openai_api_base | |
api_key=settings.OPENAI_API_KEY, | |
) | |
self.encode = self.encode_openai | |
self.model_name = model_name | |
self.config_type = config_type | |
tmp = self.encode(['tmp']) | |
self.embedding_shape = tmp.shape[1:] | |
self.embedding_dtype = tmp.dtype | |
self.embedding_device = tmp.device | |
def encode(self, texts_to_embed): | |
pass | |
def encode_sbert(self, texts_to_embed): | |
return self.model.encode(texts_to_embed, show_progress_bar=True, convert_to_tensor=True, normalize_embeddings=True) | |
def encode_openai(self, texts_to_embed): | |
import math | |
import time | |
tokens_count = 0 | |
for text in texts_to_embed: | |
tokens_count += len(self.get_tokens(text)) | |
chunks_num = math.ceil(tokens_count / 500000) | |
chunk_size = math.ceil(len(texts_to_embed) / chunks_num) | |
embeddings = [] | |
for i in range(chunks_num): | |
start = i * chunk_size | |
end = start + chunk_size | |
chunk = texts_to_embed[start:end] | |
embeddings_tmp = self.openai_client.embeddings.create( | |
model=self.model_name, | |
input=chunk, | |
).data | |
if embeddings_tmp is None: | |
break | |
embeddings.extend(embeddings_tmp) | |
if i < chunks_num - 1: | |
time.sleep(60) # Wait 1 minute before the next call | |
return torch.stack([torch.tensor(embedding.embedding, dtype=torch.float32) for embedding in embeddings]) | |
def get_tokens(self, text): | |
if self.model: | |
return self.model.tokenizer.tokenize(text) | |
tokens = [] | |
for token in re.split(r'(\W|\b)', text): | |
if token.strip(): | |
tokens.append(token) | |
return tokens | |
def create_strings_to_embbed(self, issues, black_list): | |
texts_to_embed = [_create_issue_string( | |
issue['title'], issue['body']) for issue in issues] | |
# Create issue blacklist (for keepping track) | |
token_count = 0 | |
for i, text in enumerate(texts_to_embed): | |
tokens = self.get_tokens(text) | |
tokens_len = len(tokens) | |
token_count += tokens_len | |
if tokens_len > self.TOKEN_LEN_MAX_BALCKLIST: | |
# Only use the first TOKEN_LEN_MAX tokens | |
black_list.add(int(issues[i]['number'])) | |
if self.config_type == 'openai': | |
texts_to_embed[i] = ' '.join( | |
tokens[:self.TOKEN_LEN_MAX_BALCKLIST]) | |
return texts_to_embed | |
def data_ensure_size(self, repo, size_new): | |
updated_at_old = None | |
arrays_size_old = 0 | |
titles_old = [] | |
try: | |
arrays_size_old = self.data[repo]['arrays_size'] | |
if size_new <= arrays_size_old: | |
return | |
except: | |
pass | |
arrays_size_new = self.ARRAY_CHUNK_SIZE * \ | |
(int(size_new / self.ARRAY_CHUNK_SIZE) + 1) | |
data_new = { | |
'updated_at': updated_at_old, | |
'arrays_size': arrays_size_new, | |
'titles': titles_old + [None] * (arrays_size_new - arrays_size_old), | |
'embeddings': torch.empty((arrays_size_new, *self.embedding_shape), | |
dtype=self.embedding_dtype, | |
device=self.embedding_device), | |
'opened': torch.zeros(arrays_size_new, dtype=torch.bool), | |
'closed': torch.zeros(arrays_size_new, dtype=torch.bool), | |
} | |
try: | |
data_new['embeddings'][:arrays_size_old] = self.data[repo]['embeddings'] | |
data_new['opened'][:arrays_size_old] = self.data[repo]['opened'] | |
data_new['closed'][:arrays_size_old] = self.data[repo]['closed'] | |
except: | |
pass | |
self.data[repo] = data_new | |
def embeddings_generate(self, repo): | |
if os.path.exists(self.cache_path): | |
with open(self.cache_path, 'rb') as file: | |
self.data = pickle.load(file) | |
if repo in self.data: | |
return | |
if not repo in self.black_list: | |
self.black_list[repo] = {} | |
black_list = self.black_list[repo] | |
issues = gitea_fetch_issues('blender', repo, state='all', since=None, | |
issue_attr_filter=self.issue_attr_filter, exclude=black_list) | |
# issues = sorted(issues, key=lambda issue: int(issue['number'])) | |
print("Embedding Issues...") | |
texts_to_embed = self.create_strings_to_embbed(issues, black_list) | |
embeddings = self.encode(texts_to_embed) | |
self.data_ensure_size(repo, int(issues[0]['number'])) | |
self.data[repo]['updated_at'] = _find_latest_date(issues) | |
titles = self.data[repo]['titles'] | |
embeddings_new = self.data[repo]['embeddings'] | |
opened = self.data[repo]['opened'] | |
closed = self.data[repo]['closed'] | |
for i, issue in enumerate(issues): | |
number = int(issue['number']) | |
titles[number] = issue['title'] | |
embeddings_new[number] = embeddings[i] | |
if issue['state'] == 'open': | |
opened[number] = True | |
if issue['state'] == 'closed': | |
closed[number] = True | |
def embeddings_updated_get(self, repo): | |
with self.lock: | |
try: | |
data = self.data[repo] | |
except: | |
self.embeddings_generate(repo) | |
data = self.data[repo] | |
black_list = self.black_list[repo] | |
date_old = data['updated_at'] | |
issues = gitea_fetch_issues( | |
'blender', repo, since=date_old, issue_attr_filter=self.issue_attr_filter, exclude=black_list) | |
# Get the most recent date | |
date_new = _find_latest_date(issues, date_old) | |
if date_new == date_old: | |
# Nothing changed | |
return data | |
data['updated_at'] = date_new | |
# autopep8: off | |
# WORKAROUND: | |
# Consider that if the time hasn't changed, it's the same issue. | |
issues = [issue for issue in issues if issue['updated_at'] != date_old] | |
self.data_ensure_size(repo, int(issues[0]['number'])) | |
texts_to_embed = self.create_strings_to_embbed(issues, black_list) | |
embeddings = self.encode(texts_to_embed) | |
for i, issue in enumerate(issues): | |
number = int(issue['number']) | |
data['titles'][number] = issue['title'] | |
data['embeddings'][number] = embeddings[i] | |
if issue['state'] == 'open': | |
data['opened'][number] = True | |
if issue['state'] == 'closed': | |
data['closed'][number] = True | |
# autopep8: on | |
return data | |
router = APIRouter() | |
EMBEDDING_CTX = EmbeddingContext() | |
# EMBEDDING_CTX.embeddings_generate('blender', 'blender') | |
# EMBEDDING_CTX.embeddings_generate('blender', 'blender-addons') | |
# Define your Enum class | |
class State(str, Enum): | |
opened = "opened" | |
closed = "closed" | |
all = "all" | |
def _sort_similarity(data: dict, | |
query_emb: torch.Tensor, | |
limit: int, | |
state: State = State.opened) -> list: | |
duplicates = [] | |
embeddings = data['embeddings'] | |
mask_opened = data["opened"] | |
if state == State.all: | |
mask = mask_opened | data["closed"] | |
else: | |
mask = data[state.value] | |
embeddings = embeddings[mask] | |
true_indices = mask.nonzero(as_tuple=True)[0] | |
ret = util.semantic_search( | |
query_emb, embeddings, top_k=limit, score_function=util.dot_score) | |
for score in ret[0]: | |
corpus_id = score['corpus_id'] | |
number = true_indices[corpus_id].item() | |
closed_char = "" if mask_opened[number] else "~~" | |
text = f"{closed_char}#{number}{closed_char}: {data['titles'][number]}" | |
duplicates.append(text) | |
return duplicates | |
def find_relatedness(repo: str, number: int, limit: int = 20, state: State = State.opened): | |
data = EMBEDDING_CTX.embeddings_updated_get(repo) | |
# Check if the embedding already exists. | |
if data['titles'][number] is not None: | |
new_embedding = data['embeddings'][number] | |
else: | |
gitea_issue = gitea_json_issue_get('blender', repo, number) | |
text_to_embed = _create_issue_string( | |
gitea_issue['title'], gitea_issue['body']) | |
new_embedding = EMBEDDING_CTX.encode([text_to_embed]) | |
duplicates = _sort_similarity( | |
data, new_embedding, limit=limit, state=state) | |
if not duplicates: | |
return '' | |
if match := re.search(r'(~~)?#(\d+)(~~)?:', duplicates[0]): | |
number_cached = int(match.group(2)) | |
if number_cached == number: | |
return '\n'.join(duplicates[1:]) | |
return '\n'.join(duplicates) | |
def find_related(repo: str = 'blender', number: int = 104399, limit: int = 15, state: State = State.opened): | |
related = find_relatedness(repo, number, limit=limit, state=state) | |
return related | |
if __name__ == "__main__": | |
update_cache = True | |
if update_cache: | |
EMBEDDING_CTX.embeddings_updated_get('blender') | |
EMBEDDING_CTX.embeddings_updated_get('blender-addons') | |
cache_path = EMBEDDING_CTX.cache_path | |
with open(cache_path, "wb") as file: | |
# Converting the embeddings to be CPU compatible, as the virtual machine in use currently only supports the CPU. | |
for val in EMBEDDING_CTX.data.values(): | |
val['embeddings'] = val['embeddings'].to(torch.device('cpu')) | |
pickle.dump(EMBEDDING_CTX.data, file, | |
protocol=pickle.HIGHEST_PROTOCOL) | |
else: | |
# Converting the embeddings to be GPU. | |
for val in EMBEDDING_CTX.data.values(): | |
val['embeddings'] = val['embeddings'].to(torch.device('cuda')) | |
# 'blender/blender/111434' must print #96153, #83604 and #79762 | |
related1 = find_relatedness( | |
'blender', 111434, limit=20, state=State.all) | |
related2 = find_relatedness('blender-addons', 104399, limit=20) | |
print("These are the 20 most related issues:") | |
print(related1) | |
print() | |
print("These are the 20 most related issues:") | |
print(related2) | |