File size: 14,129 Bytes
98caf15
 
f0d9ee1
 
98caf15
a78f82b
c7f8eb7
f92bafd
98caf15
f92bafd
a78f82b
c7f8eb7
98caf15
 
 
 
 
 
92238be
98caf15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f92bafd
98caf15
f0d9ee1
98caf15
 
 
 
8aab0fd
98caf15
 
f92bafd
 
 
98caf15
 
 
f0d9ee1
 
98caf15
 
 
 
91ad34e
 
 
 
 
 
 
 
98caf15
 
 
 
 
 
 
 
 
 
 
 
 
8aab0fd
 
 
 
 
98caf15
 
 
 
 
f92bafd
 
 
 
 
98caf15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aab0fd
 
 
 
 
98caf15
 
 
 
 
 
 
 
8aab0fd
98caf15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91ad34e
 
 
98caf15
 
 
f92bafd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d9ee1
 
 
 
 
 
98caf15
f0d9ee1
 
98caf15
f0d9ee1
 
f92bafd
98caf15
 
f92bafd
98caf15
 
 
 
 
f92bafd
 
 
 
 
 
 
98caf15
f92bafd
 
 
 
 
 
 
 
98caf15
f0d9ee1
98caf15
 
f0d9ee1
98caf15
f0d9ee1
 
98caf15
f0d9ee1
98caf15
 
 
f0d9ee1
98caf15
8aab0fd
 
98caf15
8aab0fd
 
98caf15
 
8aab0fd
98caf15
 
8aab0fd
 
 
 
f92bafd
98caf15
f92bafd
 
98caf15
f92bafd
 
 
 
 
 
 
 
98caf15
 
 
 
 
 
 
 
 
 
 
f92bafd
 
 
 
 
 
 
 
 
 
 
98caf15
f92bafd
6923641
f92bafd
6923641
 
 
f92bafd
6923641
 
 
f92bafd
98caf15
f92bafd
 
98caf15
 
6923641
 
 
98caf15
 
 
 
 
f92bafd
 
98caf15
f92bafd
 
 
 
 
 
 
98caf15
 
 
f92bafd
 
 
98caf15
 
 
566fa33
 
 
 
98caf15
 
 
 
f0d9ee1
f92bafd
 
98caf15
 
 
 
f0d9ee1
 
 
 
 
 
 
 
 
 
 
 
98caf15
f0d9ee1
 
 
98caf15
f0d9ee1
6923641
 
f92bafd
98caf15
 
f0d9ee1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# find_related.py

import os
import pickle
import re
import torch
import threading

from datetime import datetime, timedelta
from enum import Enum
from sentence_transformers import SentenceTransformer, util
from fastapi import APIRouter

try:
    from .utils_gitea import gitea_fetch_issues, gitea_json_issue_get
except:
    from utils_gitea import gitea_fetch_issues, gitea_json_issue_get


def _create_issue_string(title, body):
    cleaned_body = body.replace('\r', '')
    cleaned_body = cleaned_body.replace('**System Information**\n', '')
    cleaned_body = cleaned_body.replace('**Blender Version**\n', '')
    cleaned_body = cleaned_body.replace(
        'Worked: (newest version of Blender that worked as expected)\n', '')
    cleaned_body = cleaned_body.replace('**Short description of error**\n', '')
    cleaned_body = cleaned_body.replace('**Addon Information**\n', '')
    cleaned_body = cleaned_body.replace(
        '**Exact steps for others to reproduce the error**\n', '')
    cleaned_body = cleaned_body.replace(
        '[Please describe the exact steps needed to reproduce the issue]\n', '')
    cleaned_body = cleaned_body.replace(
        '[Please fill out a short description of the error here]\n', '')
    cleaned_body = cleaned_body.replace(
        '[Based on the default startup or an attached .blend file (as simple as possible)]\n', '')
    cleaned_body = re.sub(
        r', branch: .+?, commit date: \d{4}-\d{2}-\d{2} \d{2}:\d{2}, hash: `.+?`', '', cleaned_body)
    cleaned_body = re.sub(
        r'\/?attachments\/[a-zA-Z0-9\-]+', 'attachment', cleaned_body)
    cleaned_body = re.sub(
        r'https?:\/\/[^\s/]+(?:\/[^\s/]+)*\/([^\s/]+)', lambda match: match.group(1), cleaned_body)

    return title + '\n' + cleaned_body


def _find_latest_date(issues, default_str=None):
    # Handle the case where 'issues' is empty
    if not issues:
        return default_str

    return max((issue['updated_at'] for issue in issues), default=default_str)


class EmbeddingContext:
    # These don't change
    TOKEN_LEN_MAX_FOR_EMBEDDING = 512
    TOKEN_LEN_MAX_BALCKLIST = 2 * TOKEN_LEN_MAX_FOR_EMBEDDING
    ARRAY_CHUNK_SIZE = 4096
    issue_attr_filter = {'number', 'title', 'body', 'state', 'updated_at'}
    cache_path = "routers/tool_find_related_cache.pkl"

    # Set when creating the object
    lock = None
    model = None
    openai_client = None
    model_name = ''
    config_type = ''
    embedding_shape = None
    embedding_dtype = None
    embedding_device = None

    # Updates constantly
    data = {}
    black_list = {'blender': {109399, 113157, 114706},
                  'blender-addons': set()}

    def __init__(self):
        self.lock = threading.Lock()

        try:
            from config import settings
        except:
            import sys
            sys.path.append(os.path.abspath(
                os.path.join(os.path.dirname(__file__), '..')))
            from config import settings

        config_type = settings.embedding_api
        model_name = settings.embedding_model

        if config_type == 'sbert':
            self.model = SentenceTransformer(model_name, use_auth_token=False)
            self.model.max_seq_length = self.TOKEN_LEN_MAX_FOR_EMBEDDING
            print("Max Sequence Length:", self.model.max_seq_length)

            self.encode = self.encode_sbert
            if torch.cuda.is_available():
                self.model = self.model.to('cuda')

        elif config_type == 'openai':
            from openai import OpenAI
            self.openai_client = OpenAI(
                # base_url = settings.openai_api_base
                api_key=settings.OPENAI_API_KEY,
            )
            self.encode = self.encode_openai

        self.model_name = model_name
        self.config_type = config_type

        tmp = self.encode(['tmp'])
        self.embedding_shape = tmp.shape[1:]
        self.embedding_dtype = tmp.dtype
        self.embedding_device = tmp.device

    def encode(self, texts_to_embed):
        pass

    def encode_sbert(self, texts_to_embed):
        return self.model.encode(texts_to_embed, show_progress_bar=True, convert_to_tensor=True, normalize_embeddings=True)

    def encode_openai(self, texts_to_embed):
        import math
        import time

        tokens_count = 0
        for text in texts_to_embed:
            tokens_count += len(self.get_tokens(text))

            chunks_num = math.ceil(tokens_count / 500000)
            chunk_size = math.ceil(len(texts_to_embed) / chunks_num)

            embeddings = []
            for i in range(chunks_num):
                start = i * chunk_size
                end = start + chunk_size
                chunk = texts_to_embed[start:end]

                embeddings_tmp = self.openai_client.embeddings.create(
                    model=self.model_name,
                    input=chunk,
                ).data

                if embeddings_tmp is None:
                    break

                embeddings.extend(embeddings_tmp)

                if i < chunks_num - 1:
                    time.sleep(60)  # Wait 1 minute before the next call

            return torch.stack([torch.tensor(embedding.embedding, dtype=torch.float32) for embedding in embeddings])

    def get_tokens(self, text):
        if self.model:
            return self.model.tokenizer.tokenize(text)

        tokens = []
        for token in re.split(r'(\W|\b)', text):
            if token.strip():
                tokens.append(token)

        return tokens

    def create_strings_to_embbed(self, issues, black_list):
        texts_to_embed = [_create_issue_string(
            issue['title'], issue['body']) for issue in issues]

        # Create issue blacklist (for keepping track)
        token_count = 0
        for i, text in enumerate(texts_to_embed):
            tokens = self.get_tokens(text)
            tokens_len = len(tokens)
            token_count += tokens_len

            if tokens_len > self.TOKEN_LEN_MAX_BALCKLIST:
                # Only use the first TOKEN_LEN_MAX tokens
                black_list.add(int(issues[i]['number']))
                if self.config_type == 'openai':
                    texts_to_embed[i] = ' '.join(
                        tokens[:self.TOKEN_LEN_MAX_BALCKLIST])

        return texts_to_embed

    def data_ensure_size(self, repo, size_new):
        updated_at_old = None
        arrays_size_old = 0
        titles_old = []
        try:
            arrays_size_old = self.data[repo]['arrays_size']
            if size_new <= arrays_size_old:
                return
        except:
            pass

        arrays_size_new = self.ARRAY_CHUNK_SIZE * \
            (int(size_new / self.ARRAY_CHUNK_SIZE) + 1)

        data_new = {
            'updated_at': updated_at_old,
            'arrays_size': arrays_size_new,
            'titles': titles_old + [None] * (arrays_size_new - arrays_size_old),
            'embeddings': torch.empty((arrays_size_new, *self.embedding_shape),
                                      dtype=self.embedding_dtype,
                                      device=self.embedding_device),
            'opened':  torch.zeros(arrays_size_new, dtype=torch.bool),
            'closed':  torch.zeros(arrays_size_new, dtype=torch.bool),
        }

        try:
            data_new['embeddings'][:arrays_size_old] = self.data[repo]['embeddings']
            data_new['opened'][:arrays_size_old] = self.data[repo]['opened']
            data_new['closed'][:arrays_size_old] = self.data[repo]['closed']
        except:
            pass

        self.data[repo] = data_new

    def embeddings_generate(self, repo):
        if os.path.exists(self.cache_path):
            with open(self.cache_path, 'rb') as file:
                self.data = pickle.load(file)
                if repo in self.data:
                    return

        if not repo in self.black_list:
            self.black_list[repo] = {}

        black_list = self.black_list[repo]

        issues = gitea_fetch_issues('blender', repo, state='all', since=None,
                                    issue_attr_filter=self.issue_attr_filter, exclude=black_list)

        # issues = sorted(issues, key=lambda issue: int(issue['number']))

        print("Embedding Issues...")
        texts_to_embed = self.create_strings_to_embbed(issues, black_list)
        embeddings = self.encode(texts_to_embed)

        self.data_ensure_size(repo, int(issues[0]['number']))
        self.data[repo]['updated_at'] = _find_latest_date(issues)

        titles = self.data[repo]['titles']
        embeddings_new = self.data[repo]['embeddings']
        opened = self.data[repo]['opened']
        closed = self.data[repo]['closed']

        for i, issue in enumerate(issues):
            number = int(issue['number'])
            titles[number] = issue['title']
            embeddings_new[number] = embeddings[i]
            if issue['state'] == 'open':
                opened[number] = True
            if issue['state'] == 'closed':
                closed[number] = True

    def embeddings_updated_get(self, repo):
        with self.lock:
            try:
                data = self.data[repo]
            except:
                self.embeddings_generate(repo)
                data = self.data[repo]

            black_list = self.black_list[repo]
            date_old = data['updated_at']

            issues = gitea_fetch_issues(
                'blender', repo, since=date_old, issue_attr_filter=self.issue_attr_filter, exclude=black_list)

            # Get the most recent date
            date_new = _find_latest_date(issues, date_old)

            if date_new == date_old:
                # Nothing changed
                return data

            data['updated_at'] = date_new

# autopep8: off
            # WORKAROUND:
            # Consider that if the time hasn't changed, it's the same issue.
            issues = [issue for issue in issues if issue['updated_at'] != date_old]

            self.data_ensure_size(repo, int(issues[0]['number']))

            texts_to_embed = self.create_strings_to_embbed(issues, black_list)
            embeddings = self.encode(texts_to_embed)

            for i, issue in enumerate(issues):
                number = int(issue['number'])
                data['titles'][number] = issue['title']
                data['embeddings'][number] = embeddings[i]
                if issue['state'] == 'open':
                    data['opened'][number] = True
                if issue['state'] == 'closed':
                    data['closed'][number] = True

# autopep8: on
        return data


router = APIRouter()
EMBEDDING_CTX = EmbeddingContext()
# EMBEDDING_CTX.embeddings_generate('blender', 'blender')
# EMBEDDING_CTX.embeddings_generate('blender', 'blender-addons')


# Define your Enum class
class State(str, Enum):
    opened = "opened"
    closed = "closed"
    all = "all"


def _sort_similarity(data: dict,
                     query_emb: torch.Tensor,
                     limit: int,
                     state: State = State.opened) -> list:
    duplicates = []
    embeddings = data['embeddings']
    mask_opened = data["opened"]

    if state == State.all:
        mask = mask_opened | data["closed"]
    else:
        mask = data[state.value]

    embeddings = embeddings[mask]
    true_indices = mask.nonzero(as_tuple=True)[0]

    ret = util.semantic_search(
        query_emb, embeddings, top_k=limit, score_function=util.dot_score)

    for score in ret[0]:
        corpus_id = score['corpus_id']
        number = true_indices[corpus_id].item()
        closed_char = "" if mask_opened[number] else "~~"
        text = f"{closed_char}#{number}{closed_char}: {data['titles'][number]}"
        duplicates.append(text)

    return duplicates


def find_relatedness(repo: str, number: int, limit: int = 20, state: State = State.opened):
    data = EMBEDDING_CTX.embeddings_updated_get(repo)

    # Check if the embedding already exists.
    if data['titles'][number] is not None:
        new_embedding = data['embeddings'][number]
    else:
        gitea_issue = gitea_json_issue_get('blender', repo, number)
        text_to_embed = _create_issue_string(
            gitea_issue['title'], gitea_issue['body'])

        new_embedding = EMBEDDING_CTX.encode([text_to_embed])

    duplicates = _sort_similarity(
        data, new_embedding, limit=limit, state=state)

    if not duplicates:
        return ''

    if match := re.search(r'(~~)?#(\d+)(~~)?:', duplicates[0]):
        number_cached = int(match.group(2))
        if number_cached == number:
            return '\n'.join(duplicates[1:])

    return '\n'.join(duplicates)


@router.get("/find_related/{repo}/{number}")
def find_related(repo: str = 'blender', number: int = 104399, limit: int = 15, state: State = State.opened):
    related = find_relatedness(repo, number, limit=limit, state=state)
    return related


if __name__ == "__main__":
    update_cache = True
    if update_cache:
        EMBEDDING_CTX.embeddings_updated_get('blender')
        EMBEDDING_CTX.embeddings_updated_get('blender-addons')
        cache_path = EMBEDDING_CTX.cache_path
        with open(cache_path, "wb") as file:
            # Converting the embeddings to be CPU compatible, as the virtual machine in use currently only supports the CPU.
            for val in EMBEDDING_CTX.data.values():
                val['embeddings'] = val['embeddings'].to(torch.device('cpu'))

            pickle.dump(EMBEDDING_CTX.data, file,
                        protocol=pickle.HIGHEST_PROTOCOL)
    else:
        # Converting the embeddings to be GPU.
        for val in EMBEDDING_CTX.data.values():
            val['embeddings'] = val['embeddings'].to(torch.device('cuda'))

        # 'blender/blender/111434' must print #96153, #83604 and #79762
        related1 = find_relatedness(
            'blender', 111434, limit=20, state=State.all)
        related2 = find_relatedness('blender-addons', 104399, limit=20)

        print("These are the 20 most related issues:")
        print(related1)
        print()
        print("These are the 20 most related issues:")
        print(related2)