Spaces:
Running
Running
File size: 14,129 Bytes
98caf15 f0d9ee1 98caf15 a78f82b c7f8eb7 f92bafd 98caf15 f92bafd a78f82b c7f8eb7 98caf15 92238be 98caf15 f92bafd 98caf15 f0d9ee1 98caf15 8aab0fd 98caf15 f92bafd 98caf15 f0d9ee1 98caf15 91ad34e 98caf15 8aab0fd 98caf15 f92bafd 98caf15 8aab0fd 98caf15 8aab0fd 98caf15 91ad34e 98caf15 f92bafd f0d9ee1 98caf15 f0d9ee1 98caf15 f0d9ee1 f92bafd 98caf15 f92bafd 98caf15 f92bafd 98caf15 f92bafd 98caf15 f0d9ee1 98caf15 f0d9ee1 98caf15 f0d9ee1 98caf15 f0d9ee1 98caf15 f0d9ee1 98caf15 8aab0fd 98caf15 8aab0fd 98caf15 8aab0fd 98caf15 8aab0fd f92bafd 98caf15 f92bafd 98caf15 f92bafd 98caf15 f92bafd 98caf15 f92bafd 6923641 f92bafd 6923641 f92bafd 6923641 f92bafd 98caf15 f92bafd 98caf15 6923641 98caf15 f92bafd 98caf15 f92bafd 98caf15 f92bafd 98caf15 566fa33 98caf15 f0d9ee1 f92bafd 98caf15 f0d9ee1 98caf15 f0d9ee1 98caf15 f0d9ee1 6923641 f92bafd 98caf15 f0d9ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# find_related.py
import os
import pickle
import re
import torch
import threading
from datetime import datetime, timedelta
from enum import Enum
from sentence_transformers import SentenceTransformer, util
from fastapi import APIRouter
try:
from .utils_gitea import gitea_fetch_issues, gitea_json_issue_get
except:
from utils_gitea import gitea_fetch_issues, gitea_json_issue_get
def _create_issue_string(title, body):
cleaned_body = body.replace('\r', '')
cleaned_body = cleaned_body.replace('**System Information**\n', '')
cleaned_body = cleaned_body.replace('**Blender Version**\n', '')
cleaned_body = cleaned_body.replace(
'Worked: (newest version of Blender that worked as expected)\n', '')
cleaned_body = cleaned_body.replace('**Short description of error**\n', '')
cleaned_body = cleaned_body.replace('**Addon Information**\n', '')
cleaned_body = cleaned_body.replace(
'**Exact steps for others to reproduce the error**\n', '')
cleaned_body = cleaned_body.replace(
'[Please describe the exact steps needed to reproduce the issue]\n', '')
cleaned_body = cleaned_body.replace(
'[Please fill out a short description of the error here]\n', '')
cleaned_body = cleaned_body.replace(
'[Based on the default startup or an attached .blend file (as simple as possible)]\n', '')
cleaned_body = re.sub(
r', branch: .+?, commit date: \d{4}-\d{2}-\d{2} \d{2}:\d{2}, hash: `.+?`', '', cleaned_body)
cleaned_body = re.sub(
r'\/?attachments\/[a-zA-Z0-9\-]+', 'attachment', cleaned_body)
cleaned_body = re.sub(
r'https?:\/\/[^\s/]+(?:\/[^\s/]+)*\/([^\s/]+)', lambda match: match.group(1), cleaned_body)
return title + '\n' + cleaned_body
def _find_latest_date(issues, default_str=None):
# Handle the case where 'issues' is empty
if not issues:
return default_str
return max((issue['updated_at'] for issue in issues), default=default_str)
class EmbeddingContext:
# These don't change
TOKEN_LEN_MAX_FOR_EMBEDDING = 512
TOKEN_LEN_MAX_BALCKLIST = 2 * TOKEN_LEN_MAX_FOR_EMBEDDING
ARRAY_CHUNK_SIZE = 4096
issue_attr_filter = {'number', 'title', 'body', 'state', 'updated_at'}
cache_path = "routers/tool_find_related_cache.pkl"
# Set when creating the object
lock = None
model = None
openai_client = None
model_name = ''
config_type = ''
embedding_shape = None
embedding_dtype = None
embedding_device = None
# Updates constantly
data = {}
black_list = {'blender': {109399, 113157, 114706},
'blender-addons': set()}
def __init__(self):
self.lock = threading.Lock()
try:
from config import settings
except:
import sys
sys.path.append(os.path.abspath(
os.path.join(os.path.dirname(__file__), '..')))
from config import settings
config_type = settings.embedding_api
model_name = settings.embedding_model
if config_type == 'sbert':
self.model = SentenceTransformer(model_name, use_auth_token=False)
self.model.max_seq_length = self.TOKEN_LEN_MAX_FOR_EMBEDDING
print("Max Sequence Length:", self.model.max_seq_length)
self.encode = self.encode_sbert
if torch.cuda.is_available():
self.model = self.model.to('cuda')
elif config_type == 'openai':
from openai import OpenAI
self.openai_client = OpenAI(
# base_url = settings.openai_api_base
api_key=settings.OPENAI_API_KEY,
)
self.encode = self.encode_openai
self.model_name = model_name
self.config_type = config_type
tmp = self.encode(['tmp'])
self.embedding_shape = tmp.shape[1:]
self.embedding_dtype = tmp.dtype
self.embedding_device = tmp.device
def encode(self, texts_to_embed):
pass
def encode_sbert(self, texts_to_embed):
return self.model.encode(texts_to_embed, show_progress_bar=True, convert_to_tensor=True, normalize_embeddings=True)
def encode_openai(self, texts_to_embed):
import math
import time
tokens_count = 0
for text in texts_to_embed:
tokens_count += len(self.get_tokens(text))
chunks_num = math.ceil(tokens_count / 500000)
chunk_size = math.ceil(len(texts_to_embed) / chunks_num)
embeddings = []
for i in range(chunks_num):
start = i * chunk_size
end = start + chunk_size
chunk = texts_to_embed[start:end]
embeddings_tmp = self.openai_client.embeddings.create(
model=self.model_name,
input=chunk,
).data
if embeddings_tmp is None:
break
embeddings.extend(embeddings_tmp)
if i < chunks_num - 1:
time.sleep(60) # Wait 1 minute before the next call
return torch.stack([torch.tensor(embedding.embedding, dtype=torch.float32) for embedding in embeddings])
def get_tokens(self, text):
if self.model:
return self.model.tokenizer.tokenize(text)
tokens = []
for token in re.split(r'(\W|\b)', text):
if token.strip():
tokens.append(token)
return tokens
def create_strings_to_embbed(self, issues, black_list):
texts_to_embed = [_create_issue_string(
issue['title'], issue['body']) for issue in issues]
# Create issue blacklist (for keepping track)
token_count = 0
for i, text in enumerate(texts_to_embed):
tokens = self.get_tokens(text)
tokens_len = len(tokens)
token_count += tokens_len
if tokens_len > self.TOKEN_LEN_MAX_BALCKLIST:
# Only use the first TOKEN_LEN_MAX tokens
black_list.add(int(issues[i]['number']))
if self.config_type == 'openai':
texts_to_embed[i] = ' '.join(
tokens[:self.TOKEN_LEN_MAX_BALCKLIST])
return texts_to_embed
def data_ensure_size(self, repo, size_new):
updated_at_old = None
arrays_size_old = 0
titles_old = []
try:
arrays_size_old = self.data[repo]['arrays_size']
if size_new <= arrays_size_old:
return
except:
pass
arrays_size_new = self.ARRAY_CHUNK_SIZE * \
(int(size_new / self.ARRAY_CHUNK_SIZE) + 1)
data_new = {
'updated_at': updated_at_old,
'arrays_size': arrays_size_new,
'titles': titles_old + [None] * (arrays_size_new - arrays_size_old),
'embeddings': torch.empty((arrays_size_new, *self.embedding_shape),
dtype=self.embedding_dtype,
device=self.embedding_device),
'opened': torch.zeros(arrays_size_new, dtype=torch.bool),
'closed': torch.zeros(arrays_size_new, dtype=torch.bool),
}
try:
data_new['embeddings'][:arrays_size_old] = self.data[repo]['embeddings']
data_new['opened'][:arrays_size_old] = self.data[repo]['opened']
data_new['closed'][:arrays_size_old] = self.data[repo]['closed']
except:
pass
self.data[repo] = data_new
def embeddings_generate(self, repo):
if os.path.exists(self.cache_path):
with open(self.cache_path, 'rb') as file:
self.data = pickle.load(file)
if repo in self.data:
return
if not repo in self.black_list:
self.black_list[repo] = {}
black_list = self.black_list[repo]
issues = gitea_fetch_issues('blender', repo, state='all', since=None,
issue_attr_filter=self.issue_attr_filter, exclude=black_list)
# issues = sorted(issues, key=lambda issue: int(issue['number']))
print("Embedding Issues...")
texts_to_embed = self.create_strings_to_embbed(issues, black_list)
embeddings = self.encode(texts_to_embed)
self.data_ensure_size(repo, int(issues[0]['number']))
self.data[repo]['updated_at'] = _find_latest_date(issues)
titles = self.data[repo]['titles']
embeddings_new = self.data[repo]['embeddings']
opened = self.data[repo]['opened']
closed = self.data[repo]['closed']
for i, issue in enumerate(issues):
number = int(issue['number'])
titles[number] = issue['title']
embeddings_new[number] = embeddings[i]
if issue['state'] == 'open':
opened[number] = True
if issue['state'] == 'closed':
closed[number] = True
def embeddings_updated_get(self, repo):
with self.lock:
try:
data = self.data[repo]
except:
self.embeddings_generate(repo)
data = self.data[repo]
black_list = self.black_list[repo]
date_old = data['updated_at']
issues = gitea_fetch_issues(
'blender', repo, since=date_old, issue_attr_filter=self.issue_attr_filter, exclude=black_list)
# Get the most recent date
date_new = _find_latest_date(issues, date_old)
if date_new == date_old:
# Nothing changed
return data
data['updated_at'] = date_new
# autopep8: off
# WORKAROUND:
# Consider that if the time hasn't changed, it's the same issue.
issues = [issue for issue in issues if issue['updated_at'] != date_old]
self.data_ensure_size(repo, int(issues[0]['number']))
texts_to_embed = self.create_strings_to_embbed(issues, black_list)
embeddings = self.encode(texts_to_embed)
for i, issue in enumerate(issues):
number = int(issue['number'])
data['titles'][number] = issue['title']
data['embeddings'][number] = embeddings[i]
if issue['state'] == 'open':
data['opened'][number] = True
if issue['state'] == 'closed':
data['closed'][number] = True
# autopep8: on
return data
router = APIRouter()
EMBEDDING_CTX = EmbeddingContext()
# EMBEDDING_CTX.embeddings_generate('blender', 'blender')
# EMBEDDING_CTX.embeddings_generate('blender', 'blender-addons')
# Define your Enum class
class State(str, Enum):
opened = "opened"
closed = "closed"
all = "all"
def _sort_similarity(data: dict,
query_emb: torch.Tensor,
limit: int,
state: State = State.opened) -> list:
duplicates = []
embeddings = data['embeddings']
mask_opened = data["opened"]
if state == State.all:
mask = mask_opened | data["closed"]
else:
mask = data[state.value]
embeddings = embeddings[mask]
true_indices = mask.nonzero(as_tuple=True)[0]
ret = util.semantic_search(
query_emb, embeddings, top_k=limit, score_function=util.dot_score)
for score in ret[0]:
corpus_id = score['corpus_id']
number = true_indices[corpus_id].item()
closed_char = "" if mask_opened[number] else "~~"
text = f"{closed_char}#{number}{closed_char}: {data['titles'][number]}"
duplicates.append(text)
return duplicates
def find_relatedness(repo: str, number: int, limit: int = 20, state: State = State.opened):
data = EMBEDDING_CTX.embeddings_updated_get(repo)
# Check if the embedding already exists.
if data['titles'][number] is not None:
new_embedding = data['embeddings'][number]
else:
gitea_issue = gitea_json_issue_get('blender', repo, number)
text_to_embed = _create_issue_string(
gitea_issue['title'], gitea_issue['body'])
new_embedding = EMBEDDING_CTX.encode([text_to_embed])
duplicates = _sort_similarity(
data, new_embedding, limit=limit, state=state)
if not duplicates:
return ''
if match := re.search(r'(~~)?#(\d+)(~~)?:', duplicates[0]):
number_cached = int(match.group(2))
if number_cached == number:
return '\n'.join(duplicates[1:])
return '\n'.join(duplicates)
@router.get("/find_related/{repo}/{number}")
def find_related(repo: str = 'blender', number: int = 104399, limit: int = 15, state: State = State.opened):
related = find_relatedness(repo, number, limit=limit, state=state)
return related
if __name__ == "__main__":
update_cache = True
if update_cache:
EMBEDDING_CTX.embeddings_updated_get('blender')
EMBEDDING_CTX.embeddings_updated_get('blender-addons')
cache_path = EMBEDDING_CTX.cache_path
with open(cache_path, "wb") as file:
# Converting the embeddings to be CPU compatible, as the virtual machine in use currently only supports the CPU.
for val in EMBEDDING_CTX.data.values():
val['embeddings'] = val['embeddings'].to(torch.device('cpu'))
pickle.dump(EMBEDDING_CTX.data, file,
protocol=pickle.HIGHEST_PROTOCOL)
else:
# Converting the embeddings to be GPU.
for val in EMBEDDING_CTX.data.values():
val['embeddings'] = val['embeddings'].to(torch.device('cuda'))
# 'blender/blender/111434' must print #96153, #83604 and #79762
related1 = find_relatedness(
'blender', 111434, limit=20, state=State.all)
related2 = find_relatedness('blender-addons', 104399, limit=20)
print("These are the 20 most related issues:")
print(related1)
print()
print("These are the 20 most related issues:")
print(related2)
|