Spaces:
Runtime error
Runtime error
import glob | |
import json | |
import math | |
import os | |
from dataclasses import dataclass | |
import dateutil | |
import numpy as np | |
from src.display.formatting import make_clickable_model | |
# changes to be made here | |
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns | |
from src.submission.check_validity import is_model_on_hub | |
class EvalResult: | |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.""" | |
eval_name: str # org_model_precision (uid) | |
full_model: str # org/model (path on hub) | |
org: str | |
model: str | |
revision: str # commit hash, "" if main | |
dataset_results: dict | |
# changes to be made here | |
open_ended_results: dict | |
med_safety_results: dict | |
medical_summarization_results: dict | |
aci_results: dict | |
soap_results: dict | |
is_domain_specific: bool | |
use_chat_template: bool | |
# clinical_type_results:dict | |
precision: Precision = Precision.Unknown | |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ... | |
weight_type: WeightType = WeightType.Original # Original or Adapter | |
backbone:str = "Unknown" | |
license: str = "?" | |
likes: int = 0 | |
num_params: int = 0 | |
date: str = "" # submission date of request file | |
still_on_hub: bool = False | |
display_result:bool = True | |
def init_from_json_file(self, json_filepath, evaluation_metric): | |
"""Inits the result from the specific model result file""" | |
with open(json_filepath) as fp: | |
try: | |
data = json.load(fp) | |
except: | |
breakpoint() | |
config = data.get("config") | |
# Precision | |
precision = Precision.from_str(config.get("model_dtype")) | |
model_type = ModelType.from_str(config.get("model_type", "")) | |
license = config.get("license", "?") | |
num_params = config.get("num_params", "?") | |
display_result = config.get("display_result", True) | |
display_result = False if display_result=="False" else True | |
# Get model and org | |
org_and_model = config.get("model_name", config.get("model_args", None)) | |
org_and_model = org_and_model.split("/", 1) | |
if len(org_and_model) == 1: | |
org = None | |
model = org_and_model[0] | |
result_key = f"{model}_{precision.value.name}" | |
else: | |
org = org_and_model[0] | |
model = org_and_model[1] | |
result_key = f"{org}_{model}_{precision.value.name}" | |
full_model = "/".join(org_and_model) | |
still_on_hub, _, model_config = is_model_on_hub( | |
full_model, config.get("revision", "main"), trust_remote_code=True, test_tokenizer=False | |
) | |
backbone = "?" | |
if model_config is not None: | |
backbones = getattr(model_config, "architectures", None) | |
if backbones: | |
backbone = ";".join(backbones) | |
# Extract results available in this file (some results are split in several files) | |
harness_results = {} | |
if "closed-ended" in data["results"]: | |
for task in HarnessTasks: | |
task = task.value | |
# We average all scores of a given metric (not all metrics are present in all files) | |
try: | |
accs = np.array([v.get(task.metric, None) for k, v in data["results"]["closed-ended"].items() if task.benchmark == k]) | |
except: | |
# breakpoint() | |
accs = np.array([]) | |
if accs.size == 0 or any([acc is None for acc in accs]): | |
continue | |
mean_acc = np.mean(accs) # * 100.0 | |
harness_results[task.benchmark] = mean_acc | |
open_ended_results = {} | |
if "open-ended" in data["results"]: | |
for task in OpenEndedColumns: | |
task = task.value | |
# We average all scores of a given metric (not all metrics are present in all files) | |
accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None | |
open_ended_results[task.benchmark] = accs | |
if open_ended_results["ELO_intervals"] is not None and open_ended_results["Score_intervals"] is not None: | |
open_ended_results["ELO_intervals"] = "+" + str(open_ended_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_results["ELO_intervals"][0])) | |
open_ended_results["Score_intervals"] = "+" + str(open_ended_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_results["Score_intervals"][0])) | |
# breakpoint() | |
# changes to be made here | |
med_safety_results = {} | |
if "med-safety" in data["results"]: | |
for task in MedSafetyColumns: | |
task = task.value | |
if task.benchmark == "Harmfulness Score": | |
accs = data["results"]["med-safety"][task.benchmark] | |
med_safety_results[task.benchmark] = accs | |
elif task.benchmark == "95% CI": | |
accs = data["results"]["med-safety"][task.benchmark] | |
med_safety_results[task.benchmark] = "+" + str(round(accs[1], 3)) + "/-" + str(round(abs(accs[0]), 3)) | |
else: | |
accs = data["results"]["med-safety"][task.benchmark]["score"] | |
med_safety_results[task.benchmark] = accs | |
medical_summarization_results = {} | |
if "medical-summarization" in data["results"]: | |
for task in MedicalSummarizationColumns: | |
task = task.value | |
try: | |
accs = np.array([v for k, v in data["results"]["medical-summarization"]["clinical_trial"].items() if task.benchmark == k]) | |
except: | |
accs = np.array([]) | |
if accs.size == 0 or any([acc is None for acc in accs]): | |
continue | |
mean_acc = np.mean(accs) # * 100.0 | |
medical_summarization_results[task.benchmark] = mean_acc | |
aci_results = {} | |
if "note-generation" in data["results"] and "aci" in data["results"]["note-generation"]: | |
for task in ACIColumns: | |
task = task.value | |
try: | |
accs = np.array([v for k, v in data["results"]["note-generation"]["aci"].items() if task.benchmark == k]) | |
except: | |
accs = np.array([]) | |
if accs.size == 0 or any([acc is None for acc in accs]): | |
continue | |
mean_acc = np.mean(accs) # * 100.0 | |
aci_results[task.benchmark] = mean_acc | |
soap_results = {} | |
if "note-generation" in data["results"] and "soap" in data["results"]["note-generation"]: | |
for task in SOAPColumns: | |
task = task.value | |
try: | |
accs = np.array([v for k, v in data["results"]["note-generation"]["soap"].items() if task.benchmark == k]) | |
except: | |
accs = np.array([]) | |
if accs.size == 0 or any([acc is None for acc in accs]): | |
continue | |
mean_acc = np.mean(accs) # * 100.0 | |
soap_results[task.benchmark] = mean_acc | |
if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}: | |
open_ended_results = {} | |
med_safety_results = {} | |
medical_summarization_results = {} | |
aci_results = {} | |
soap_results = {} | |
# types_results = {} | |
# for clinical_type in ClinicalTypes: | |
# clinical_type = clinical_type.value | |
# # We average all scores of a given metric (not all metrics are present in all files) | |
# accs = np.array([v.get(clinical_type.metric, None) for k, v in data[evaluation_metric]["clinical_type_results"].items() if clinical_type.benchmark == k]) | |
# if accs.size == 0 or any([acc is None for acc in accs]): | |
# continue | |
# mean_acc = np.mean(accs) # * 100.0 | |
# types_results[clinical_type.benchmark] = mean_acc | |
return self( | |
eval_name=result_key, | |
full_model=full_model, | |
org=org, | |
model=model, | |
revision=config.get("revision", ""), | |
dataset_results=harness_results, | |
open_ended_results=open_ended_results, | |
med_safety_results=med_safety_results, | |
medical_summarization_results=medical_summarization_results, | |
aci_results=aci_results, | |
soap_results=soap_results, | |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value | |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value | |
precision=precision, | |
model_type=model_type, | |
weight_type=WeightType.from_str(config.get("weight_type", "")), # Assuming the default value | |
backbone=backbone, | |
license=license, | |
likes=config.get("likes", 0), # Assuming a default value | |
num_params=num_params, | |
still_on_hub=still_on_hub, | |
display_result=display_result, | |
date=config.get("submitted_time","") | |
) | |
def update_with_request_file(self, requests_path): | |
"""Finds the relevant request file for the current model and updates info with it""" | |
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) | |
try: | |
with open(request_file, "r") as f: | |
request = json.load(f) | |
self.model_type = ModelType.from_str(request.get("model_type", "")) | |
self.weight_type = WeightType[request.get("weight_type", "Original")] | |
self.license = request.get("license", "?") | |
self.likes = request.get("likes", 0) | |
self.num_params = request.get("params", 0) | |
self.date = request.get("submitted_time", "") | |
# self.precision = request.get("precision", "float32") | |
except Exception: | |
pass | |
# print( | |
# f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}" | |
# ) | |
# print(f" Args used were - {request_file=}, {requests_path=}, {self.full_model=},") | |
def to_dict(self, subset): | |
"""Converts the Eval Result to a dict compatible with our dataframe display""" | |
data_dict = { | |
"eval_name": self.eval_name, # not a column, just a save name, | |
AutoEvalColumn.precision.name: self.precision.value.name, | |
AutoEvalColumn.model_type.name: self.model_type.value.name, | |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" 🏥" if self.is_domain_specific else ""), | |
AutoEvalColumn.weight_type.name: self.weight_type.value.name, | |
# AutoEvalColumn.architecture.name: self.architecture.value.name, | |
# AutoEvalColumn.backbone.name: self.backbone, | |
AutoEvalColumn.model.name: make_clickable_model(self.full_model), | |
AutoEvalColumn.is_domain_specific.name: self.is_domain_specific, | |
AutoEvalColumn.use_chat_template.name: self.use_chat_template, | |
AutoEvalColumn.revision.name: self.revision, | |
AutoEvalColumn.license.name: self.license, | |
AutoEvalColumn.likes.name: self.likes, | |
AutoEvalColumn.params.name: self.num_params, | |
AutoEvalColumn.still_on_hub.name: self.still_on_hub, | |
AutoEvalColumn.date.name: self.date, | |
"display_result" : self.display_result, | |
} | |
if subset == "datasets": | |
average = sum([v for v in self.dataset_results.values() if v is not None]) / len(HarnessTasks) | |
data_dict[AutoEvalColumn.average.name] = average | |
if len(self.dataset_results) > 0: | |
for task in HarnessTasks: | |
data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark] | |
return data_dict | |
if subset == "open_ended": | |
if len(self.open_ended_results) > 0: | |
for task in OpenEndedColumns: | |
data_dict[task.value.col_name] = self.open_ended_results[task.value.benchmark] | |
return data_dict | |
# changes to be made here | |
if subset == "med_safety": | |
if len(self.med_safety_results) > 0: | |
for task in MedSafetyColumns: | |
data_dict[task.value.col_name] = self.med_safety_results[task.value.benchmark] | |
return data_dict | |
if subset == "medical_summarization": | |
if len(self.medical_summarization_results) > 0: | |
adjusted_conciseness = max(0, self.medical_summarization_results["brief"]) | |
coverage = self.medical_summarization_results["coverage"] | |
hm = 2 / (1/coverage + 1/adjusted_conciseness) if not (adjusted_conciseness == 0 or coverage == 0) else 0 | |
conformity = self.medical_summarization_results["conform"] | |
consistency = self.medical_summarization_results["fact"] | |
overall = sum([hm, conformity, consistency]) / 3 | |
data_dict[AutoEvalColumn.overall.name] = overall | |
for task in MedicalSummarizationColumns: | |
data_dict[task.value.col_name] = self.medical_summarization_results[task.value.benchmark] | |
return data_dict | |
if subset == "aci": | |
overall = sum([v for v in self.aci_results.values() if v is not None]) / len(ACIColumns) | |
data_dict[AutoEvalColumn.overall.name] = overall | |
if len(self.aci_results) > 0: | |
for task in ACIColumns: | |
data_dict[task.value.col_name] = self.aci_results[task.value.benchmark] | |
return data_dict | |
if subset == "soap": | |
overall = sum([v for v in self.soap_results.values() if v is not None]) / len(SOAPColumns) | |
data_dict[AutoEvalColumn.overall.name] = overall | |
if len(self.soap_results) > 0: | |
for task in SOAPColumns: | |
data_dict[task.value.col_name] = self.soap_results[task.value.benchmark] | |
return data_dict | |
def get_request_file_for_model(requests_path, model_name, precision): | |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" | |
request_files = os.path.join( | |
requests_path, | |
f"{model_name}_eval_request_*.json", | |
) | |
request_files = glob.glob(request_files) | |
# Select correct request file (precision) | |
request_file = "" | |
request_files = sorted(request_files, reverse=True) | |
for tmp_request_file in request_files: | |
with open(tmp_request_file, "r") as f: | |
req_content = json.load(f) | |
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]: | |
request_file = tmp_request_file | |
return request_file | |
def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metric: str) -> list[EvalResult]: | |
"""From the path of the results folder root, extract all needed info for results""" | |
model_result_filepaths = [] | |
for root, _, files in os.walk(results_path): | |
# We should only have json files in model results | |
if len(files) == 0 or any([not f.endswith(".json") for f in files]): | |
continue | |
# Sort the files by date | |
try: | |
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) | |
except dateutil.parser._parser.ParserError: | |
files = [files[-1]] | |
for file in files: | |
model_result_filepaths.append(os.path.join(root, file)) | |
eval_results = {} | |
for model_result_filepath in model_result_filepaths: | |
# Creation of result | |
eval_result = EvalResult.init_from_json_file(model_result_filepath, evaluation_metric) | |
# eval_result.update_with_request_file(requests_path) | |
# Store results of same eval together | |
eval_name = eval_result.eval_name | |
# if eval_name in eval_results.keys(): | |
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) | |
# else: | |
eval_results[eval_name] = eval_result | |
results = [] | |
# clinical_type_results = [] | |
for v in eval_results.values(): | |
try: | |
v.to_dict(subset="dataset") # we test if the dict version is complete | |
if not v.display_result: | |
continue | |
results.append(v) | |
except KeyError: # not all eval values present | |
continue | |
# breakpoint() | |
return results | |