File size: 17,124 Bytes
9ae8d89
 
 
 
 
 
 
 
 
 
0a14325
553b217
9ae8d89
 
 
 
 
09b313f
 
 
 
 
9ae8d89
09b313f
 
0a14325
0da5ee3
 
553b217
 
 
d8147b8
 
09b313f
9ae8d89
09b313f
 
 
9ae8d89
 
 
09b313f
9ae8d89
09b313f
9ae8d89
 
09b313f
9ae8d89
 
6c10fa6
 
 
 
 
09b313f
9ae8d89
 
 
 
09b313f
 
 
 
 
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
9ae8d89
09b313f
9ae8d89
09b313f
 
 
9ae8d89
 
d86ca68
34c150d
 
 
 
 
 
 
 
 
 
 
 
 
0da5ee3
 
 
 
 
57fd1ce
 
 
 
 
0da5ee3
0a14325
0da5ee3
0a14325
 
 
ba515db
 
 
 
 
 
 
 
 
553b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46f69ad
3c09632
 
 
 
 
09b313f
 
 
 
 
 
 
 
 
 
 
9ae8d89
 
 
 
 
 
d8147b8
d86ca68
0da5ee3
 
553b217
 
 
d8147b8
 
09b313f
 
d8147b8
 
09b313f
d8147b8
 
 
 
 
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
9ae8d89
09b313f
 
 
 
 
9ae8d89
09b313f
9ae8d89
0da5ee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
 
0da5ee3
34c150d
 
 
09b313f
 
0da5ee3
 
 
 
09b313f
0a14325
 
 
 
 
 
553b217
 
c92b14d
 
 
 
 
 
 
553b217
 
 
 
c92b14d
 
553b217
 
 
 
 
c92b14d
 
553b217
 
 
 
0da5ee3
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
9ae8d89
 
 
 
09b313f
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
 
9ae8d89
 
 
09b313f
 
 
 
9ae8d89
 
09b313f
9ae8d89
 
09b313f
 
 
9ae8d89
 
 
34c150d
9ae8d89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
# changes to be made here
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns
from src.submission.check_validity import is_model_on_hub


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run."""

    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    dataset_results: dict
    # changes to be made here
    open_ended_results: dict
    med_safety_results: dict
    medical_summarization_results: dict
    aci_results: dict
    soap_results: dict
    is_domain_specific: bool
    use_chat_template: bool
    # clinical_type_results:dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    backbone:str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = False
    display_result:bool = True

    @classmethod
    def init_from_json_file(self, json_filepath, evaluation_metric):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            try:
                data = json.load(fp)
            except:
                breakpoint()
            
 
        config = data.get("config")

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))
        model_type = ModelType.from_str(config.get("model_type", ""))
        license = config.get("license", "?")
        num_params = config.get("num_params", "?")
        display_result = config.get("display_result", True)
        display_result = False if display_result=="False" else True

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model, config.get("revision", "main"), trust_remote_code=True, test_tokenizer=False
        )
        backbone = "?"
        if model_config is not None:
            backbones = getattr(model_config, "architectures", None)
            if backbones:
                backbone = ";".join(backbones)

        # Extract results available in this file (some results are split in several files)
        harness_results = {}
        if "closed-ended" in data["results"]:
            for task in HarnessTasks:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                try:
                    accs = np.array([v.get(task.metric, None) for k, v in data["results"]["closed-ended"].items() if task.benchmark == k])
                except:
                    # breakpoint()
                    accs = np.array([])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue
                mean_acc = np.mean(accs)  # * 100.0
                harness_results[task.benchmark] = mean_acc
        open_ended_results = {}
        if "open-ended" in data["results"]:
            for task in OpenEndedColumns:
                task = task.value
                # We average all scores of a given metric (not all metrics are present in all files)
                accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
                open_ended_results[task.benchmark] = accs
            if open_ended_results["ELO_intervals"] is not None and open_ended_results["Score_intervals"] is not None:
                open_ended_results["ELO_intervals"] = "+" + str(open_ended_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_results["ELO_intervals"][0]))
                open_ended_results["Score_intervals"] = "+" + str(open_ended_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_results["Score_intervals"][0]))
        # breakpoint()
        # changes to be made here
        med_safety_results = {}
        if "med-safety" in data["results"]:
            for task in MedSafetyColumns:
                task = task.value
                if task.benchmark == "Harmfulness Score":
                    accs = data["results"]["med-safety"][task.benchmark]
                    med_safety_results[task.benchmark] = accs
                elif task.benchmark == "95% CI":
                    accs = data["results"]["med-safety"][task.benchmark]
                    med_safety_results[task.benchmark] = "+" + str(round(accs[1], 3)) + "/-" + str(round(abs(accs[0]), 3))
                else:
                    accs = data["results"]["med-safety"][task.benchmark]["score"]
                    med_safety_results[task.benchmark] = accs
        medical_summarization_results = {}
        if "medical-summarization" in data["results"]:
            for task in MedicalSummarizationColumns:
                task = task.value
                try:
                    accs = np.array([v for k, v in data["results"]["medical-summarization"]["clinical_trial"].items() if task.benchmark == k])
                except:
                    accs = np.array([])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue
                mean_acc = np.mean(accs)  # * 100.0
                medical_summarization_results[task.benchmark] = mean_acc
        aci_results = {}
        if "note-generation" in data["results"] and "aci" in data["results"]["note-generation"]:
            for task in ACIColumns:
                task = task.value
                try:
                    accs = np.array([v for k, v in data["results"]["note-generation"]["aci"].items() if task.benchmark == k])
                except:
                    accs = np.array([])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue
                mean_acc = np.mean(accs)  # * 100.0
                aci_results[task.benchmark] = mean_acc
        soap_results = {}
        if "note-generation" in data["results"] and "soap" in data["results"]["note-generation"]:
            for task in SOAPColumns:
                task = task.value
                try:
                    accs = np.array([v for k, v in data["results"]["note-generation"]["soap"].items() if task.benchmark == k])
                except:
                    accs = np.array([])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue
                mean_acc = np.mean(accs)  # * 100.0
                soap_results[task.benchmark] = mean_acc
        if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
            open_ended_results = {}
            med_safety_results = {}
            medical_summarization_results = {}
            aci_results = {}
            soap_results = {}
        # types_results = {}
        # for clinical_type in ClinicalTypes:
        #     clinical_type = clinical_type.value

        #     # We average all scores of a given metric (not all metrics are present in all files)
        #     accs = np.array([v.get(clinical_type.metric, None) for k, v in data[evaluation_metric]["clinical_type_results"].items() if clinical_type.benchmark == k])
        #     if accs.size == 0 or any([acc is None for acc in accs]):
        #         continue

        #     mean_acc = np.mean(accs)  # * 100.0
        #     types_results[clinical_type.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            revision=config.get("revision", ""),
            dataset_results=harness_results,
            open_ended_results=open_ended_results,
            med_safety_results=med_safety_results,
            medical_summarization_results=medical_summarization_results,
            aci_results=aci_results,
            soap_results=soap_results,
            is_domain_specific=config.get("is_domain_specific", False),  # Assuming a default value
            use_chat_template=config.get("use_chat_template", False),  # Assuming a default value
            precision=precision,
            model_type=model_type,
            weight_type=WeightType.from_str(config.get("weight_type", "")),  # Assuming the default value
            backbone=backbone,
            license=license,
            likes=config.get("likes", 0),  # Assuming a default value
            num_params=num_params,
            still_on_hub=still_on_hub,
            display_result=display_result,
            date=config.get("submitted_time","")
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
            # self.precision = request.get("precision", "float32")
        except Exception:
            pass
            # print(
            #     f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
            # )
            # print(f" Args used were - {request_file=}, {requests_path=}, {self.full_model=},")

    def to_dict(self, subset):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" 🏥" if self.is_domain_specific else ""),
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            # AutoEvalColumn.architecture.name: self.architecture.value.name,
            # AutoEvalColumn.backbone.name: self.backbone,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.is_domain_specific.name: self.is_domain_specific,
            AutoEvalColumn.use_chat_template.name: self.use_chat_template,
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.date.name: self.date,
            "display_result" : self.display_result,
        }

        if subset == "datasets":
            average = sum([v for v in self.dataset_results.values() if v is not None]) / len(HarnessTasks)
            data_dict[AutoEvalColumn.average.name] = average
            if len(self.dataset_results) > 0:
                for task in HarnessTasks:
                    data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark]
            return data_dict
        
        if subset == "open_ended":
            if len(self.open_ended_results) > 0:
                for task in OpenEndedColumns:
                    data_dict[task.value.col_name] = self.open_ended_results[task.value.benchmark]
            return data_dict
        # changes to be made here
        if subset == "med_safety":
            if len(self.med_safety_results) > 0:
                for task in MedSafetyColumns:
                    data_dict[task.value.col_name] = self.med_safety_results[task.value.benchmark]
            return data_dict
        if subset == "medical_summarization":
            if len(self.medical_summarization_results) > 0:
                adjusted_conciseness = max(0, self.medical_summarization_results["brief"])
                coverage = self.medical_summarization_results["coverage"]
                hm = 2 / (1/coverage + 1/adjusted_conciseness) if not (adjusted_conciseness == 0 or coverage == 0) else 0
                conformity = self.medical_summarization_results["conform"]
                consistency = self.medical_summarization_results["fact"]
                overall = sum([hm, conformity, consistency]) / 3
                data_dict[AutoEvalColumn.overall.name] = overall
                for task in MedicalSummarizationColumns:
                    data_dict[task.value.col_name] = self.medical_summarization_results[task.value.benchmark]
            return data_dict
        if subset == "aci":
            overall = sum([v for v in self.aci_results.values() if v is not None]) / len(ACIColumns)
            data_dict[AutoEvalColumn.overall.name] = overall
            if len(self.aci_results) > 0:
                for task in ACIColumns:
                    data_dict[task.value.col_name] = self.aci_results[task.value.benchmark]
            return data_dict
        if subset == "soap":
            overall = sum([v for v in self.soap_results.values() if v is not None]) / len(SOAPColumns)
            data_dict[AutoEvalColumn.overall.name] = overall
            if len(self.soap_results) > 0:
                for task in SOAPColumns:
                    data_dict[task.value.col_name] = self.soap_results[task.value.benchmark]
            return data_dict
        

def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metric: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath, evaluation_metric)
        # eval_result.update_with_request_file(requests_path)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        # if eval_name in eval_results.keys():
        #     eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        # else:
        eval_results[eval_name] = eval_result

    results = []
    # clinical_type_results = []
    for v in eval_results.values():
        try:
            v.to_dict(subset="dataset")  # we test if the dict version is complete
            if not v.display_result:
                continue
            results.append(v)
        except KeyError:  # not all eval values present
            continue
    # breakpoint()
    return results