Spaces:
Running
Running
File size: 17,124 Bytes
9ae8d89 0a14325 553b217 9ae8d89 09b313f 9ae8d89 09b313f 0a14325 0da5ee3 553b217 d8147b8 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 6c10fa6 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 d86ca68 34c150d 0da5ee3 57fd1ce 0da5ee3 0a14325 0da5ee3 0a14325 ba515db 553b217 46f69ad 3c09632 09b313f 9ae8d89 d8147b8 d86ca68 0da5ee3 553b217 d8147b8 09b313f d8147b8 09b313f d8147b8 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 0da5ee3 09b313f 0da5ee3 34c150d 09b313f 0da5ee3 09b313f 0a14325 553b217 c92b14d 553b217 c92b14d 553b217 c92b14d 553b217 0da5ee3 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 34c150d 9ae8d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
# changes to be made here
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
dataset_results: dict
# changes to be made here
open_ended_results: dict
med_safety_results: dict
medical_summarization_results: dict
aci_results: dict
soap_results: dict
is_domain_specific: bool
use_chat_template: bool
# clinical_type_results:dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
backbone:str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
display_result:bool = True
@classmethod
def init_from_json_file(self, json_filepath, evaluation_metric):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
try:
data = json.load(fp)
except:
breakpoint()
config = data.get("config")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
model_type = ModelType.from_str(config.get("model_type", ""))
license = config.get("license", "?")
num_params = config.get("num_params", "?")
display_result = config.get("display_result", True)
display_result = False if display_result=="False" else True
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("revision", "main"), trust_remote_code=True, test_tokenizer=False
)
backbone = "?"
if model_config is not None:
backbones = getattr(model_config, "architectures", None)
if backbones:
backbone = ";".join(backbones)
# Extract results available in this file (some results are split in several files)
harness_results = {}
if "closed-ended" in data["results"]:
for task in HarnessTasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
try:
accs = np.array([v.get(task.metric, None) for k, v in data["results"]["closed-ended"].items() if task.benchmark == k])
except:
# breakpoint()
accs = np.array([])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) # * 100.0
harness_results[task.benchmark] = mean_acc
open_ended_results = {}
if "open-ended" in data["results"]:
for task in OpenEndedColumns:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
open_ended_results[task.benchmark] = accs
if open_ended_results["ELO_intervals"] is not None and open_ended_results["Score_intervals"] is not None:
open_ended_results["ELO_intervals"] = "+" + str(open_ended_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_results["ELO_intervals"][0]))
open_ended_results["Score_intervals"] = "+" + str(open_ended_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_results["Score_intervals"][0]))
# breakpoint()
# changes to be made here
med_safety_results = {}
if "med-safety" in data["results"]:
for task in MedSafetyColumns:
task = task.value
if task.benchmark == "Harmfulness Score":
accs = data["results"]["med-safety"][task.benchmark]
med_safety_results[task.benchmark] = accs
elif task.benchmark == "95% CI":
accs = data["results"]["med-safety"][task.benchmark]
med_safety_results[task.benchmark] = "+" + str(round(accs[1], 3)) + "/-" + str(round(abs(accs[0]), 3))
else:
accs = data["results"]["med-safety"][task.benchmark]["score"]
med_safety_results[task.benchmark] = accs
medical_summarization_results = {}
if "medical-summarization" in data["results"]:
for task in MedicalSummarizationColumns:
task = task.value
try:
accs = np.array([v for k, v in data["results"]["medical-summarization"]["clinical_trial"].items() if task.benchmark == k])
except:
accs = np.array([])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) # * 100.0
medical_summarization_results[task.benchmark] = mean_acc
aci_results = {}
if "note-generation" in data["results"] and "aci" in data["results"]["note-generation"]:
for task in ACIColumns:
task = task.value
try:
accs = np.array([v for k, v in data["results"]["note-generation"]["aci"].items() if task.benchmark == k])
except:
accs = np.array([])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) # * 100.0
aci_results[task.benchmark] = mean_acc
soap_results = {}
if "note-generation" in data["results"] and "soap" in data["results"]["note-generation"]:
for task in SOAPColumns:
task = task.value
try:
accs = np.array([v for k, v in data["results"]["note-generation"]["soap"].items() if task.benchmark == k])
except:
accs = np.array([])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) # * 100.0
soap_results[task.benchmark] = mean_acc
if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
open_ended_results = {}
med_safety_results = {}
medical_summarization_results = {}
aci_results = {}
soap_results = {}
# types_results = {}
# for clinical_type in ClinicalTypes:
# clinical_type = clinical_type.value
# # We average all scores of a given metric (not all metrics are present in all files)
# accs = np.array([v.get(clinical_type.metric, None) for k, v in data[evaluation_metric]["clinical_type_results"].items() if clinical_type.benchmark == k])
# if accs.size == 0 or any([acc is None for acc in accs]):
# continue
# mean_acc = np.mean(accs) # * 100.0
# types_results[clinical_type.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
revision=config.get("revision", ""),
dataset_results=harness_results,
open_ended_results=open_ended_results,
med_safety_results=med_safety_results,
medical_summarization_results=medical_summarization_results,
aci_results=aci_results,
soap_results=soap_results,
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
precision=precision,
model_type=model_type,
weight_type=WeightType.from_str(config.get("weight_type", "")), # Assuming the default value
backbone=backbone,
license=license,
likes=config.get("likes", 0), # Assuming a default value
num_params=num_params,
still_on_hub=still_on_hub,
display_result=display_result,
date=config.get("submitted_time","")
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
# self.precision = request.get("precision", "float32")
except Exception:
pass
# print(
# f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
# )
# print(f" Args used were - {request_file=}, {requests_path=}, {self.full_model=},")
def to_dict(self, subset):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" 🏥" if self.is_domain_specific else ""),
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
# AutoEvalColumn.architecture.name: self.architecture.value.name,
# AutoEvalColumn.backbone.name: self.backbone,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.is_domain_specific.name: self.is_domain_specific,
AutoEvalColumn.use_chat_template.name: self.use_chat_template,
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.date.name: self.date,
"display_result" : self.display_result,
}
if subset == "datasets":
average = sum([v for v in self.dataset_results.values() if v is not None]) / len(HarnessTasks)
data_dict[AutoEvalColumn.average.name] = average
if len(self.dataset_results) > 0:
for task in HarnessTasks:
data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark]
return data_dict
if subset == "open_ended":
if len(self.open_ended_results) > 0:
for task in OpenEndedColumns:
data_dict[task.value.col_name] = self.open_ended_results[task.value.benchmark]
return data_dict
# changes to be made here
if subset == "med_safety":
if len(self.med_safety_results) > 0:
for task in MedSafetyColumns:
data_dict[task.value.col_name] = self.med_safety_results[task.value.benchmark]
return data_dict
if subset == "medical_summarization":
if len(self.medical_summarization_results) > 0:
adjusted_conciseness = max(0, self.medical_summarization_results["brief"])
coverage = self.medical_summarization_results["coverage"]
hm = 2 / (1/coverage + 1/adjusted_conciseness) if not (adjusted_conciseness == 0 or coverage == 0) else 0
conformity = self.medical_summarization_results["conform"]
consistency = self.medical_summarization_results["fact"]
overall = sum([hm, conformity, consistency]) / 3
data_dict[AutoEvalColumn.overall.name] = overall
for task in MedicalSummarizationColumns:
data_dict[task.value.col_name] = self.medical_summarization_results[task.value.benchmark]
return data_dict
if subset == "aci":
overall = sum([v for v in self.aci_results.values() if v is not None]) / len(ACIColumns)
data_dict[AutoEvalColumn.overall.name] = overall
if len(self.aci_results) > 0:
for task in ACIColumns:
data_dict[task.value.col_name] = self.aci_results[task.value.benchmark]
return data_dict
if subset == "soap":
overall = sum([v for v in self.soap_results.values() if v is not None]) / len(SOAPColumns)
data_dict[AutoEvalColumn.overall.name] = overall
if len(self.soap_results) > 0:
for task in SOAPColumns:
data_dict[task.value.col_name] = self.soap_results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metric: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath, evaluation_metric)
# eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
# if eval_name in eval_results.keys():
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
# else:
eval_results[eval_name] = eval_result
results = []
# clinical_type_results = []
for v in eval_results.values():
try:
v.to_dict(subset="dataset") # we test if the dict version is complete
if not v.display_result:
continue
results.append(v)
except KeyError: # not all eval values present
continue
# breakpoint()
return results
|