Spaces:
Runtime error
Runtime error
Commit
Β·
d8147b8
1
Parent(s):
e1cdc4b
[FIX] Filters and search
Browse files- app.py +67 -47
- src/display/utils.py +23 -14
- src/leaderboard/read_evals.py +17 -10
- src/populate.py +1 -1
app.py
CHANGED
@@ -106,14 +106,14 @@ def update_df(shown_columns, subset="datasets"):
|
|
106 |
def update_table(
|
107 |
hidden_df: pd.DataFrame,
|
108 |
columns: list,
|
109 |
-
query: str,
|
110 |
type_query: list = None,
|
111 |
-
|
112 |
size_query: list = None,
|
113 |
precision_query: str = None,
|
114 |
show_deleted: bool = False,
|
115 |
):
|
116 |
-
filtered_df = filter_models(hidden_df, type_query,
|
117 |
filtered_df = filter_queries(query, filtered_df)
|
118 |
df = select_columns(filtered_df, columns, list(hidden_df.columns))
|
119 |
return df
|
@@ -157,7 +157,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
157 |
|
158 |
|
159 |
def filter_models(
|
160 |
-
df: pd.DataFrame, type_query: list,
|
161 |
) -> pd.DataFrame:
|
162 |
# Show all models
|
163 |
# if show_deleted:
|
@@ -168,13 +168,21 @@ def filter_models(
|
|
168 |
filtered_df = df
|
169 |
|
170 |
if type_query is not None:
|
171 |
-
|
172 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.
|
173 |
-
|
174 |
-
if
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
if precision_query is not None:
|
180 |
if AutoEvalColumn.precision.name in df.columns:
|
@@ -291,6 +299,13 @@ with demo:
|
|
291 |
# interactive=True,
|
292 |
# elem_id="filter-columns-architecture",
|
293 |
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
filter_columns_size = gr.CheckboxGroup(
|
295 |
label="Model sizes (in billions of parameters)",
|
296 |
choices=list(NUMERIC_INTERVALS.keys()),
|
@@ -311,44 +326,49 @@ with demo:
|
|
311 |
)
|
312 |
|
313 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
|
321 |
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
with gr.TabItem("π
Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
354 |
pass
|
|
|
106 |
def update_table(
|
107 |
hidden_df: pd.DataFrame,
|
108 |
columns: list,
|
109 |
+
query: str = "",
|
110 |
type_query: list = None,
|
111 |
+
domain_specific_query: list = None,
|
112 |
size_query: list = None,
|
113 |
precision_query: str = None,
|
114 |
show_deleted: bool = False,
|
115 |
):
|
116 |
+
filtered_df = filter_models(hidden_df, type_query, domain_specific_query, size_query, precision_query, show_deleted)
|
117 |
filtered_df = filter_queries(query, filtered_df)
|
118 |
df = select_columns(filtered_df, columns, list(hidden_df.columns))
|
119 |
return df
|
|
|
157 |
|
158 |
|
159 |
def filter_models(
|
160 |
+
df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
|
161 |
) -> pd.DataFrame:
|
162 |
# Show all models
|
163 |
# if show_deleted:
|
|
|
168 |
filtered_df = df
|
169 |
|
170 |
if type_query is not None:
|
171 |
+
type_name = [t.split(" ")[1] for t in type_query]
|
172 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type.name].isin(type_name)]
|
173 |
+
|
174 |
+
if domain_specific_query is not None:
|
175 |
+
domain_specifics = []
|
176 |
+
if "Yes" in domain_specific_query:
|
177 |
+
domain_specifics.append(True)
|
178 |
+
if "No" in domain_specific_query:
|
179 |
+
domain_specifics.append(False)
|
180 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
|
181 |
+
|
182 |
+
# if architecture_query is not None:
|
183 |
+
# arch_types = [t for t in architecture_query]
|
184 |
+
# filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
|
185 |
+
# # filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
|
186 |
|
187 |
if precision_query is not None:
|
188 |
if AutoEvalColumn.precision.name in df.columns:
|
|
|
299 |
# interactive=True,
|
300 |
# elem_id="filter-columns-architecture",
|
301 |
# )
|
302 |
+
filter_domain_specific = gr.CheckboxGroup(
|
303 |
+
label="Domain specific models",
|
304 |
+
choices=["Yes", "No"],
|
305 |
+
value=["Yes", "No"],
|
306 |
+
interactive=True,
|
307 |
+
elem_id="filter-columns-type",
|
308 |
+
)
|
309 |
filter_columns_size = gr.CheckboxGroup(
|
310 |
label="Model sizes (in billions of parameters)",
|
311 |
choices=list(NUMERIC_INTERVALS.keys()),
|
|
|
326 |
)
|
327 |
|
328 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
329 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
330 |
+
value=datasets_original_df[DATASET_COLS],
|
331 |
+
headers=DATASET_COLS,
|
332 |
+
datatype=TYPES,
|
333 |
+
visible=False,
|
334 |
+
)
|
335 |
|
336 |
|
337 |
+
search_bar.submit(
|
338 |
+
update_table,
|
339 |
+
[
|
340 |
+
hidden_leaderboard_table_for_search,
|
341 |
+
shown_columns,
|
342 |
+
search_bar,
|
343 |
+
filter_columns_type,
|
344 |
+
filter_domain_specific,
|
345 |
+
filter_columns_size
|
346 |
+
# filter_columns_architecture
|
347 |
+
],
|
348 |
+
leaderboard_table,
|
349 |
+
)
|
350 |
+
for selector in [
|
351 |
+
shown_columns,
|
352 |
+
filter_columns_type,
|
353 |
+
filter_domain_specific,
|
354 |
+
# filter_columns_architecture,
|
355 |
+
filter_columns_size,
|
356 |
+
# deleted_models_visibility,
|
357 |
+
]:
|
358 |
+
selector.change(
|
359 |
+
update_table,
|
360 |
+
[
|
361 |
+
hidden_leaderboard_table_for_search,
|
362 |
+
shown_columns,
|
363 |
+
search_bar,
|
364 |
+
filter_columns_type,
|
365 |
+
filter_domain_specific,
|
366 |
+
filter_columns_size
|
367 |
+
# filter_columns_architecture,
|
368 |
+
],
|
369 |
+
leaderboard_table,
|
370 |
+
queue=True,
|
371 |
+
)
|
372 |
|
373 |
with gr.TabItem("π
Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
374 |
pass
|
src/display/utils.py
CHANGED
@@ -28,25 +28,25 @@ class ColumnContent:
|
|
28 |
## Leaderboard columns
|
29 |
auto_eval_column_dict = []
|
30 |
# Init
|
|
|
31 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
32 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
33 |
-
|
34 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
|
35 |
for task in HarnessTasks:
|
36 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True)])
|
37 |
-
|
|
|
|
|
38 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
39 |
-
auto_eval_column_dict.append(["
|
40 |
-
auto_eval_column_dict.append(["backbone", ColumnContent, ColumnContent("Base Model", "str", False)])
|
41 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
42 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, True)])
|
43 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
|
|
44 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
45 |
-
auto_eval_column_dict.append(["
|
46 |
-
auto_eval_column_dict.append(
|
47 |
-
|
48 |
-
)
|
49 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
50 |
|
51 |
# We use make dataclass to dynamically fill the scores from Tasks
|
52 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
@@ -77,7 +77,7 @@ class ModelType(Enum):
|
|
77 |
# FINETUNED = ModelDetails(name="fine-tuned", symbol="βͺ")
|
78 |
PT = ModelDetails(name="pretrained", symbol="π’")
|
79 |
# FT = ModelDetails(name="fine-tuned", symbol="πΆ")
|
80 |
-
# DS = ModelDetails(name="domain-specific", symbol="
|
81 |
IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
82 |
RL = ModelDetails(name="preference-tuned", symbol="π¦")
|
83 |
Unknown = ModelDetails(name="", symbol="?")
|
@@ -99,7 +99,7 @@ class ModelType(Enum):
|
|
99 |
return ModelType.RL
|
100 |
if "instruction-tuned" in type or "β" in type:
|
101 |
return ModelType.IFT
|
102 |
-
# if "domain-specific" in type or "
|
103 |
# return ModelType.DS
|
104 |
return ModelType.Unknown
|
105 |
|
@@ -129,7 +129,16 @@ class WeightType(Enum):
|
|
129 |
Adapter = ModelDetails("Adapter")
|
130 |
Original = ModelDetails("Original")
|
131 |
Delta = ModelDetails("Delta")
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
class Precision(Enum):
|
135 |
auto = ModelDetails("auto")
|
|
|
28 |
## Leaderboard columns
|
29 |
auto_eval_column_dict = []
|
30 |
# Init
|
31 |
+
auto_eval_column_dict = []
|
32 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
33 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
34 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
35 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
|
36 |
for task in HarnessTasks:
|
37 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True)])
|
38 |
+
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
39 |
+
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
40 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
41 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
42 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False)])
|
43 |
+
# auto_eval_column_dict.append(["backbone", ColumnContent, ColumnContent("Base Model", "str", False)])
|
|
|
|
|
44 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
45 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
46 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
47 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, True)])
|
48 |
+
# auto_eval_column_dict.append(["display_result", ColumnContent, ColumnContent("Display Result", "bool", False, True)])
|
49 |
+
auto_eval_column_dict.append(["date", ColumnContent, ColumnContent("Submission Date", "str", False)])
|
|
|
|
|
50 |
|
51 |
# We use make dataclass to dynamically fill the scores from Tasks
|
52 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
77 |
# FINETUNED = ModelDetails(name="fine-tuned", symbol="βͺ")
|
78 |
PT = ModelDetails(name="pretrained", symbol="π’")
|
79 |
# FT = ModelDetails(name="fine-tuned", symbol="πΆ")
|
80 |
+
# DS = ModelDetails(name="domain-specific", symbol="π₯")
|
81 |
IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
82 |
RL = ModelDetails(name="preference-tuned", symbol="π¦")
|
83 |
Unknown = ModelDetails(name="", symbol="?")
|
|
|
99 |
return ModelType.RL
|
100 |
if "instruction-tuned" in type or "β" in type:
|
101 |
return ModelType.IFT
|
102 |
+
# if "domain-specific" in type or "π₯" in type:
|
103 |
# return ModelType.DS
|
104 |
return ModelType.Unknown
|
105 |
|
|
|
129 |
Adapter = ModelDetails("Adapter")
|
130 |
Original = ModelDetails("Original")
|
131 |
Delta = ModelDetails("Delta")
|
132 |
+
Unknown = ModelDetails("?")
|
133 |
+
|
134 |
+
def from_str(wt):
|
135 |
+
if "original" in wt.lower():
|
136 |
+
return WeightType.Original
|
137 |
+
if "adapter" in wt.lower():
|
138 |
+
return WeightType.Adapter
|
139 |
+
if "delta" in wt.lower():
|
140 |
+
return WeightType.Delta
|
141 |
+
return WeightType.Unknown
|
142 |
|
143 |
class Precision(Enum):
|
144 |
auto = ModelDetails("auto")
|
src/leaderboard/read_evals.py
CHANGED
@@ -22,11 +22,12 @@ class EvalResult:
|
|
22 |
model: str
|
23 |
revision: str # commit hash, "" if main
|
24 |
dataset_results: dict
|
|
|
|
|
25 |
# clinical_type_results:dict
|
26 |
precision: Precision = Precision.Unknown
|
27 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
28 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
29 |
-
architecture: str = "Unknown"
|
30 |
backbone:str = "Unknown"
|
31 |
license: str = "?"
|
32 |
likes: int = 0
|
@@ -104,17 +105,20 @@ class EvalResult:
|
|
104 |
full_model=full_model,
|
105 |
org=org,
|
106 |
model=model,
|
|
|
107 |
dataset_results=dataset_results,
|
108 |
-
#
|
|
|
109 |
precision=precision,
|
110 |
-
revision=config.get("revision", ""),
|
111 |
-
still_on_hub=still_on_hub,
|
112 |
-
# architecture=model_architecture,
|
113 |
-
backbone=backbone,
|
114 |
model_type=model_type,
|
115 |
-
|
|
|
116 |
license=license,
|
117 |
-
|
|
|
|
|
|
|
|
|
118 |
)
|
119 |
|
120 |
def update_with_request_file(self, requests_path):
|
@@ -146,17 +150,20 @@ class EvalResult:
|
|
146 |
"eval_name": self.eval_name, # not a column, just a save name,
|
147 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
148 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
149 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
150 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
151 |
# AutoEvalColumn.architecture.name: self.architecture.value.name,
|
152 |
-
AutoEvalColumn.backbone.name: self.backbone,
|
153 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
|
|
|
|
154 |
AutoEvalColumn.revision.name: self.revision,
|
155 |
AutoEvalColumn.average.name: average,
|
156 |
AutoEvalColumn.license.name: self.license,
|
157 |
AutoEvalColumn.likes.name: self.likes,
|
158 |
AutoEvalColumn.params.name: self.num_params,
|
159 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
|
|
160 |
"display_result" : self.display_result,
|
161 |
}
|
162 |
|
|
|
22 |
model: str
|
23 |
revision: str # commit hash, "" if main
|
24 |
dataset_results: dict
|
25 |
+
is_domain_specific: bool
|
26 |
+
use_chat_template: bool
|
27 |
# clinical_type_results:dict
|
28 |
precision: Precision = Precision.Unknown
|
29 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
30 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
|
|
31 |
backbone:str = "Unknown"
|
32 |
license: str = "?"
|
33 |
likes: int = 0
|
|
|
105 |
full_model=full_model,
|
106 |
org=org,
|
107 |
model=model,
|
108 |
+
revision=config.get("revision", ""),
|
109 |
dataset_results=dataset_results,
|
110 |
+
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
111 |
+
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
112 |
precision=precision,
|
|
|
|
|
|
|
|
|
113 |
model_type=model_type,
|
114 |
+
weight_type=WeightType.from_str(config.get("weight_type", "")), # Assuming the default value
|
115 |
+
backbone=backbone,
|
116 |
license=license,
|
117 |
+
likes=config.get("likes", 0), # Assuming a default value
|
118 |
+
num_params=num_params,
|
119 |
+
still_on_hub=still_on_hub,
|
120 |
+
display_result=display_result,
|
121 |
+
date=config.get("submitted_time","")
|
122 |
)
|
123 |
|
124 |
def update_with_request_file(self, requests_path):
|
|
|
150 |
"eval_name": self.eval_name, # not a column, just a save name,
|
151 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
152 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
153 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" π₯" if self.is_domain_specific else ""),
|
154 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
155 |
# AutoEvalColumn.architecture.name: self.architecture.value.name,
|
156 |
+
# AutoEvalColumn.backbone.name: self.backbone,
|
157 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
158 |
+
AutoEvalColumn.is_domain_specific.name: self.is_domain_specific,
|
159 |
+
AutoEvalColumn.use_chat_template.name: self.use_chat_template,
|
160 |
AutoEvalColumn.revision.name: self.revision,
|
161 |
AutoEvalColumn.average.name: average,
|
162 |
AutoEvalColumn.license.name: self.license,
|
163 |
AutoEvalColumn.likes.name: self.likes,
|
164 |
AutoEvalColumn.params.name: self.num_params,
|
165 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
166 |
+
AutoEvalColumn.date.name: self.date,
|
167 |
"display_result" : self.display_result,
|
168 |
}
|
169 |
|
src/populate.py
CHANGED
@@ -10,7 +10,7 @@ from src.leaderboard.read_evals import get_raw_eval_results
|
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, evaluation_metric:str, subset:str) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
-
raw_data =
|
14 |
# print(raw_data)
|
15 |
# raise Exception("stop")
|
16 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
|
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, evaluation_metric:str, subset:str) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
+
raw_data = get_raw_eval_results(results_path, requests_path, evaluation_metric)
|
14 |
# print(raw_data)
|
15 |
# raise Exception("stop")
|
16 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|