Spaces:
Running
Running
File size: 50,711 Bytes
09b313f 9ae8d89 09b313f 96ca081 3c09632 5c80286 acb30f3 09b313f acb30f3 9ae8d89 ef49d36 9ae8d89 0a14325 9ae8d89 09b313f 0da5ee3 0a14325 553b217 09b313f 0da5ee3 0a14325 553b217 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 3df6003 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 0a14325 09b313f 0da5ee3 09b313f 0a14325 553b217 0da5ee3 09b313f 9ae8d89 553b217 09b313f 0a14325 0da5ee3 0a14325 553b217 09b313f 0da5ee3 09b313f d8147b8 09b313f d8147b8 09b313f d8147b8 09b313f d8147b8 09b313f d8147b8 12f8259 d8147b8 12f8259 d8147b8 09b313f 9ae8d89 553b217 9ae8d89 85b4142 9ae8d89 09b313f 0da5ee3 09b313f 0da5ee3 09b313f d8147b8 12f8259 d8147b8 09b313f 9ae8d89 09b313f 9ae8d89 09b313f d8147b8 09b313f d8147b8 09b313f 0da5ee3 12f8259 0da5ee3 3df6003 09b313f 0a14325 12f8259 0a14325 3df6003 553b217 3c09632 553b217 12f8259 553b217 09b313f 553b217 3df6003 553b217 5c80286 553b217 c92b14d 553b217 c92b14d 553b217 12f8259 553b217 c92b14d 553b217 c92b14d 553b217 12f8259 553b217 3df6003 553b217 09b313f 96ca081 acb30f3 09b313f acb30f3 b3eff40 553b217 9ae8d89 b3eff40 9ae8d89 b3eff40 671e1a6 b3eff40 9ae8d89 b3eff40 9ae8d89 b3eff40 671e1a6 b3eff40 9ae8d89 b3eff40 9ae8d89 b3eff40 9ae8d89 09b313f 9ae8d89 09b313f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 |
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT_1,
LLM_BENCHMARKS_TEXT_2,
CROSS_EVALUATION_METRICS,
NOTE_GENERATION_METRICS,
# EVALUATION_EXAMPLE_IMG,
# LLM_BENCHMARKS_TEXT_2,
# ENTITY_DISTRIBUTION_IMG,
# LLM_BENCHMARKS_TEXT_3,
TITLE,
LOGO,
FIVE_PILLAR_DIAGRAM
)
from src.display.css_html_js import custom_css
# changes to be made here
from src.display.utils import (
DATASET_BENCHMARK_COLS,
OPEN_ENDED_BENCHMARK_COLS,
MED_SAFETY_BENCHMARK_COLS,
MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
ACI_BENCHMARK_COLS,
SOAP_BENCHMARK_COLS,
DATASET_COLS,
OPEN_ENDED_COLS,
MED_SAFETY_COLS,
MEDICAL_SUMMARIZATION_COLS,
ACI_COLS,
SOAP_COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
ModelArch,
PromptTemplateName,
Precision,
WeightType,
fields,
render_generation_templates
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
# Span based results
# changes to be made here
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
open_ended_leaderboard_df = open_ended_original_df.copy()
_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
med_safety_leaderboard_df = med_safety_original_df.copy()
_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
medical_summarization_leaderboard_df = medical_summarization_original_df.copy()
_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
aci_leaderboard_df = aci_original_df.copy()
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
soap_leaderboard_df = soap_original_df.copy()
# breakpoint()
# # Token based results
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
# _, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types")
# token_based_types_leaderboard_df = token_based_types_original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# breakpoint()
def update_df(shown_columns, subset="datasets"):
# changes to be made here
if subset == "datasets":
leaderboard_table_df = harness_datasets_leaderboard_df.copy()
hidden_leader_board_df = harness_datasets_original_df
elif subset == "open_ended":
leaderboard_table_df = open_ended_leaderboard_df.copy()
hidden_leader_board_df = open_ended_original_df
elif subset == "med_safety":
leaderboard_table_df = med_safety_leaderboard_df.copy()
hidden_leader_board_df = med_safety_original_df
elif subset == "medical_summarization":
leaderboard_table_df = medical_summarization_leaderboard_df.copy()
hidden_leader_board_df = medical_summarization_original_df
elif subset == "aci":
leaderboard_table_df = aci_leaderboard_df.copy()
hidden_leader_board_df = aci_original_df
elif subset == "soap":
leaderboard_table_df = soap_leaderboard_df.copy()
hidden_leader_board_df = soap_original_df
# else:
# match evaluation_metric:
# case "Span Based":
# leaderboard_table_df = span_based_types_leaderboard_df.copy()
# hidden_leader_board_df = span_based_types_original_df
# case "Token Based":
# leaderboard_table_df = token_based_types_leaderboard_df.copy()
# hidden_leader_board_df = token_based_types_original_df
# case _:
# pass
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
# breakpoint()
return leaderboard_table_df[value_cols], hidden_leader_board_df
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
query: str = "",
type_query: list = None,
domain_specific_query: list = None,
size_query: list = None,
precision_query: str = None,
show_deleted: bool = False,
):
filtered_df = filter_models(hidden_df, type_query, domain_specific_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns, list(hidden_df.columns))
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
AutoEvalColumn.model.name,
# AutoEvalColumn.precision.name,
# AutoEvalColumn.revision.name,
]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
# if show_deleted:
# filtered_df = df
# else: # Show only still on the hub models
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
filtered_df = df
if type_query is not None:
type_name = [t.split(" ")[1] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type.name].isin(type_name)]
if domain_specific_query is not None:
domain_specifics = []
if "π₯ Clinical models" in domain_specific_query:
domain_specifics.append(True)
if "Generic models" in domain_specific_query:
domain_specifics.append(False)
filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
# if architecture_query is not None:
# arch_types = [t for t in architecture_query]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
# # filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
if precision_query is not None:
if AutoEvalColumn.precision.name in df.columns:
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
if size_query is not None:
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
print("hello")
gr.HTML(TITLE)
gr.HTML(LOGO)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model Types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
# filter_columns_architecture = gr.CheckboxGroup(
# label="Architecture Types",
# choices=[i.value.name for i in ModelArch],
# value=[i.value.name for i in ModelArch],
# interactive=True,
# elem_id="filter-columns-architecture",
# )
filter_domain_specific = gr.CheckboxGroup(
label="Domain Specificity",
choices=["π₯ Clinical models", "Generic models"],
value=["π₯ Clinical models", "Generic models"],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
leaderboard_table = gr.components.Dataframe(
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=datasets_original_df[DATASET_COLS],
headers=DATASET_COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
# filter_columns_architecture
],
leaderboard_table,
)
for selector in [
shown_columns,
filter_columns_type,
filter_domain_specific,
# filter_columns_architecture,
filter_columns_size,
# deleted_models_visibility,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
# filter_columns_architecture,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π
Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model Types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
# filter_columns_architecture = gr.CheckboxGroup(
# label="Architecture Types",
# choices=[i.value.name for i in ModelArch],
# value=[i.value.name for i in ModelArch],
# interactive=True,
# elem_id="filter-columns-architecture",
# )
filter_domain_specific = gr.CheckboxGroup(
label="Domain Specificity",
choices=["π₯ Clinical models", "Generic models"],
value=["π₯ Clinical models", "Generic models"],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="open_ended")
leaderboard_table = gr.components.Dataframe(
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=datasets_original_df[OPEN_ENDED_COLS],
headers=OPEN_ENDED_COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
# filter_columns_architecture
],
leaderboard_table,
)
for selector in [
shown_columns,
filter_columns_type,
filter_domain_specific,
# filter_columns_architecture,
filter_columns_size,
# deleted_models_visibility,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
# filter_columns_architecture,
],
leaderboard_table,
queue=True,
)
with gr.Accordion("π¬ Generation templates", open=False):
with gr.Accordion("Response generation", open=False):
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
with gr.Accordion("Scoring Rubric", open=False):
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
with gr.TabItem("π
Med Safety", elem_id="llm-benchmark-tab-table", id=2):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model Types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
# filter_columns_architecture = gr.CheckboxGroup(
# label="Architecture Types",
# choices=[i.value.name for i in ModelArch],
# value=[i.value.name for i in ModelArch],
# interactive=True,
# elem_id="filter-columns-architecture",
# )
filter_domain_specific = gr.CheckboxGroup(
label="Domain Specificity",
choices=["π₯ Clinical models", "Generic models"],
value=["π₯ Clinical models", "Generic models"],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
leaderboard_table = gr.components.Dataframe(
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=datasets_original_df[MED_SAFETY_COLS],
headers=MED_SAFETY_COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
# filter_columns_architecture
],
leaderboard_table,
)
for selector in [
shown_columns,
filter_columns_type,
filter_domain_specific,
filter_columns_size,
# deleted_models_visibility,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
],
leaderboard_table,
queue=True,
)
with gr.Accordion("π¬ Generation templates", open=False):
with gr.Accordion("Response generation", open=False):
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
with gr.Accordion("Scoring Rubric", open=False):
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
with gr.TabItem("π
Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model Types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
# filter_columns_architecture = gr.CheckboxGroup(
# label="Architecture Types",
# choices=[i.value.name for i in ModelArch],
# value=[i.value.name for i in ModelArch],
# interactive=True,
# elem_id="filter-columns-architecture",
# )
filter_domain_specific = gr.CheckboxGroup(
label="Domain Specificity",
choices=["π₯ Clinical models", "Generic models"],
value=["π₯ Clinical models", "Generic models"],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
leaderboard_table = gr.components.Dataframe(
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
headers=MEDICAL_SUMMARIZATION_COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
# filter_columns_architecture
],
leaderboard_table,
)
for selector in [
shown_columns,
filter_columns_type,
filter_domain_specific,
filter_columns_size,
# deleted_models_visibility,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
],
leaderboard_table,
queue=True,
)
with gr.Accordion("π¬ Generation templates", open=False):
with gr.Accordion("Response generation", open=False):
system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
with gr.Accordion("Question generation", open=False):
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
with gr.Accordion("Cross Examination", open=False):
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
with gr.TabItem("π
Note generation", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-table2", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model Types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
# filter_columns_architecture = gr.CheckboxGroup(
# label="Architecture Types",
# choices=[i.value.name for i in ModelArch],
# value=[i.value.name for i in ModelArch],
# interactive=True,
# elem_id="filter-columns-architecture",
# )
filter_domain_specific = gr.CheckboxGroup(
label="Domain Specificity",
choices=["π₯ Clinical models", "Generic models"],
value=["π₯ Clinical models", "Generic models"],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
leaderboard_table = gr.components.Dataframe(
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=datasets_original_df[ACI_COLS],
headers=ACI_COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
# filter_columns_architecture
],
leaderboard_table,
)
for selector in [
shown_columns,
filter_columns_type,
filter_domain_specific,
filter_columns_size,
# deleted_models_visibility,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
],
leaderboard_table,
queue=True,
)
with gr.TabItem("SOAP Notes", elem_id="llm-benchmark-tab-table2", id=1):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
# with gr.Row():
# deleted_models_visibility = gr.Checkbox(
# value=False, label="Show gated/private/deleted models", interactive=True
# )
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model Types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
# filter_columns_architecture = gr.CheckboxGroup(
# label="Architecture Types",
# choices=[i.value.name for i in ModelArch],
# value=[i.value.name for i in ModelArch],
# interactive=True,
# elem_id="filter-columns-architecture",
# )
filter_domain_specific = gr.CheckboxGroup(
label="Domain Specificity",
choices=["π₯ Clinical models", "Generic models"],
value=["π₯ Clinical models", "Generic models"],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
leaderboard_table = gr.components.Dataframe(
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=datasets_original_df[SOAP_COLS],
headers=SOAP_COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
# filter_columns_architecture
],
leaderboard_table,
)
for selector in [
shown_columns,
filter_columns_type,
filter_domain_specific,
filter_columns_size,
# deleted_models_visibility,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
filter_columns_type,
filter_domain_specific,
filter_columns_size
],
leaderboard_table,
queue=True,
)
with gr.Accordion("π¬ Generation templates", open=False):
with gr.Accordion("ACI-Bench Response generation", open=False):
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
with gr.Accordion("SOAP Notes Response generation", open=False):
system_prompt, user_prompt = render_generation_templates(task="soap", generation_type="response_generation")
with gr.Accordion("Question generation", open=False):
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
with gr.Accordion("Cross Examination", open=False):
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=5):
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
gr.HTML(FIVE_PILLAR_DIAGRAM)
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
# gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo")
# gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
# gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo")
# gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=6):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="auto",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value=WeightType.Original.value.name,
interactive=False,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", interactive=False)
with gr.Row():
domain_specific_toggle = gr.Checkbox(
label="Domain specific",
value=False,
info="Is your model medically oriented?",
)
chat_template_toggle = gr.Checkbox(
label="Use chat template",
value=False,
info="Is your model a chat model?",
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
model_type,
domain_specific_toggle,
chat_template_toggle,
precision,
weight_type
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|