File size: 50,711 Bytes
09b313f
 
9ae8d89
 
 
 
 
 
 
 
 
 
09b313f
96ca081
3c09632
5c80286
acb30f3
 
09b313f
acb30f3
9ae8d89
ef49d36
 
9ae8d89
 
0a14325
9ae8d89
09b313f
0da5ee3
0a14325
553b217
 
 
09b313f
0da5ee3
0a14325
553b217
 
 
9ae8d89
 
09b313f
 
9ae8d89
 
09b313f
 
 
9ae8d89
09b313f
3df6003
9ae8d89
 
 
09b313f
9ae8d89
 
 
 
09b313f
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
0a14325
 
09b313f
 
 
0da5ee3
 
09b313f
0a14325
 
 
553b217
 
 
 
 
 
 
 
 
0da5ee3
09b313f
 
 
 
 
 
9ae8d89
 
 
 
 
 
 
 
553b217
09b313f
0a14325
0da5ee3
 
 
 
 
 
0a14325
 
 
553b217
 
 
 
 
 
 
 
 
09b313f
 
 
 
 
 
 
 
 
 
 
 
 
0da5ee3
09b313f
 
 
 
 
 
 
d8147b8
09b313f
d8147b8
09b313f
 
 
 
d8147b8
09b313f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8147b8
09b313f
 
 
 
 
 
 
 
 
 
d8147b8
 
 
 
 
12f8259
d8147b8
12f8259
d8147b8
 
 
 
 
 
 
09b313f
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8d89
 
553b217
9ae8d89
85b4142
9ae8d89
 
 
09b313f
 
 
 
 
 
 
 
 
 
 
0da5ee3
09b313f
 
 
0da5ee3
09b313f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8147b8
12f8259
 
 
d8147b8
 
 
09b313f
 
 
 
 
 
 
9ae8d89
09b313f
9ae8d89
09b313f
 
 
 
 
 
 
 
 
 
d8147b8
 
 
 
 
 
09b313f
 
d8147b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
 
0da5ee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f8259
 
 
0da5ee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df6003
 
 
 
 
09b313f
0a14325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f8259
 
 
0a14325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df6003
 
 
 
 
553b217
3c09632
553b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f8259
 
 
553b217
 
 
 
 
 
 
 
 
 
 
 
09b313f
553b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df6003
 
 
 
 
 
 
553b217
5c80286
553b217
 
 
 
 
 
 
 
 
 
 
 
c92b14d
553b217
 
 
c92b14d
553b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f8259
 
 
553b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c92b14d
553b217
 
 
c92b14d
553b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f8259
 
 
553b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df6003
 
 
 
 
 
 
 
 
553b217
09b313f
96ca081
 
acb30f3
 
09b313f
acb30f3
b3eff40
553b217
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3eff40
9ae8d89
 
 
 
 
 
 
 
 
b3eff40
 
 
 
671e1a6
b3eff40
9ae8d89
b3eff40
 
 
9ae8d89
b3eff40
671e1a6
b3eff40
 
 
 
 
 
 
 
 
 
 
 
 
9ae8d89
 
 
 
 
 
 
b3eff40
9ae8d89
 
b3eff40
 
 
 
9ae8d89
 
 
 
09b313f
9ae8d89
 
 
 
 
 
 
 
 
 
 
 
 
09b313f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
import subprocess

import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT_1,
    LLM_BENCHMARKS_TEXT_2,
    CROSS_EVALUATION_METRICS,
    NOTE_GENERATION_METRICS,
    # EVALUATION_EXAMPLE_IMG,
    # LLM_BENCHMARKS_TEXT_2,
    # ENTITY_DISTRIBUTION_IMG,
    # LLM_BENCHMARKS_TEXT_3,
    TITLE,
    LOGO,
    FIVE_PILLAR_DIAGRAM
)
from src.display.css_html_js import custom_css
# changes to be made here
from src.display.utils import (
    DATASET_BENCHMARK_COLS,
    OPEN_ENDED_BENCHMARK_COLS,
    MED_SAFETY_BENCHMARK_COLS,
    MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
    ACI_BENCHMARK_COLS,
    SOAP_BENCHMARK_COLS,
    DATASET_COLS,
    OPEN_ENDED_COLS,
    MED_SAFETY_COLS,
    MEDICAL_SUMMARIZATION_COLS,
    ACI_COLS,
    SOAP_COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    ModelArch,
    PromptTemplateName,
    Precision,
    WeightType,
    fields,
    render_generation_templates
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG

def restart_space():
    API.restart_space(repo_id=REPO_ID)


try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()

# Span based results
# changes to be made here

_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()

_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
open_ended_leaderboard_df = open_ended_original_df.copy()

_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
med_safety_leaderboard_df = med_safety_original_df.copy()

_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
medical_summarization_leaderboard_df = medical_summarization_original_df.copy()

_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
aci_leaderboard_df = aci_original_df.copy()

_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
soap_leaderboard_df = soap_original_df.copy()

# breakpoint()
# # Token based results
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()

# _, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types")
# token_based_types_leaderboard_df = token_based_types_original_df.copy()


(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

# breakpoint()
def update_df(shown_columns, subset="datasets"):
    # changes to be made here
    if subset == "datasets":
        leaderboard_table_df = harness_datasets_leaderboard_df.copy()
        hidden_leader_board_df = harness_datasets_original_df
    elif subset == "open_ended":
        leaderboard_table_df = open_ended_leaderboard_df.copy()
        hidden_leader_board_df = open_ended_original_df
    elif subset == "med_safety":
        leaderboard_table_df = med_safety_leaderboard_df.copy()
        hidden_leader_board_df = med_safety_original_df
    elif subset == "medical_summarization":
        leaderboard_table_df = medical_summarization_leaderboard_df.copy()
        hidden_leader_board_df = medical_summarization_original_df
    elif subset == "aci":
        leaderboard_table_df = aci_leaderboard_df.copy()
        hidden_leader_board_df = aci_original_df
    elif subset == "soap":
        leaderboard_table_df = soap_leaderboard_df.copy()
        hidden_leader_board_df = soap_original_df
    # else:
    #     match evaluation_metric:
    #         case "Span Based":
    #             leaderboard_table_df = span_based_types_leaderboard_df.copy()
    #             hidden_leader_board_df = span_based_types_original_df
    #         case "Token Based":
    #             leaderboard_table_df = token_based_types_leaderboard_df.copy()
    #             hidden_leader_board_df = token_based_types_original_df
    #         case _:
    #             pass        
    

    value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
    # breakpoint()
    return leaderboard_table_df[value_cols], hidden_leader_board_df


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    query: str = "",
    type_query: list = None,
    domain_specific_query: list = None,
    size_query: list = None,
    precision_query: str = None,
    show_deleted: bool = False,
):
    filtered_df = filter_models(hidden_df, type_query, domain_specific_query, size_query, precision_query, show_deleted)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns, list(hidden_df.columns))
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[
                    AutoEvalColumn.model.name,
                    # AutoEvalColumn.precision.name,
                    # AutoEvalColumn.revision.name,
                ]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    # if show_deleted:
    #     filtered_df = df
    # else:  # Show only still on the hub models
    #     filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    filtered_df = df

    if type_query is not None:
        type_name = [t.split(" ")[1] for t in type_query]
        filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type.name].isin(type_name)]

    if domain_specific_query is not None:
        domain_specifics = []
        if "πŸ₯  Clinical models" in domain_specific_query:
            domain_specifics.append(True)
        if "Generic models" in domain_specific_query:
            domain_specifics.append(False)
        filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
        
    # if architecture_query is not None:
    #     arch_types = [t for t in architecture_query]
    #     filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
    #         # filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
    
    if precision_query is not None:
        if AutoEvalColumn.precision.name in df.columns:
            filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    if size_query is not None:
        numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
        params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
        mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
        filtered_df = filtered_df.loc[mask]

    return filtered_df

            
demo = gr.Blocks(css=custom_css)
with demo:
    print("hello")
    gr.HTML(TITLE)
    gr.HTML(LOGO)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    # with gr.Row():
                    #     deleted_models_visibility = gr.Checkbox(
                    #         value=False, label="Show gated/private/deleted models", interactive=True
                    #     )
                with gr.Column(min_width=320):
                    # with gr.Box(elem_id="box-filter"):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model Types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    # filter_columns_architecture = gr.CheckboxGroup(
                    #     label="Architecture Types",
                    #     choices=[i.value.name for i in ModelArch],
                    #     value=[i.value.name for i in ModelArch],
                    #     interactive=True,
                    #     elem_id="filter-columns-architecture",
                    # )
                    filter_domain_specific = gr.CheckboxGroup(
                        label="Domain Specificity",
                        choices=["πŸ₯  Clinical models", "Generic models"],
                        value=["πŸ₯  Clinical models", "Generic models"],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )

            datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")

            leaderboard_table = gr.components.Dataframe(
                value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=datasets_original_df[DATASET_COLS],
                headers=DATASET_COLS,
                datatype=TYPES,
                visible=False,
            )

                        
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    search_bar,
                    filter_columns_type,
                    filter_domain_specific,
                    filter_columns_size
                    # filter_columns_architecture
                ],
                leaderboard_table,
            )
            for selector in [
                shown_columns,
                filter_columns_type,
                filter_domain_specific,
                # filter_columns_architecture,
                filter_columns_size,
                # deleted_models_visibility,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        search_bar,
                        filter_columns_type,
                        filter_domain_specific,
                        filter_columns_size
                        # filter_columns_architecture,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        with gr.TabItem("πŸ… Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    # with gr.Row():
                    #     deleted_models_visibility = gr.Checkbox(
                    #         value=False, label="Show gated/private/deleted models", interactive=True
                    #     )
                with gr.Column(min_width=320):
                    # with gr.Box(elem_id="box-filter"):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model Types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    # filter_columns_architecture = gr.CheckboxGroup(
                    #     label="Architecture Types",
                    #     choices=[i.value.name for i in ModelArch],
                    #     value=[i.value.name for i in ModelArch],
                    #     interactive=True,
                    #     elem_id="filter-columns-architecture",
                    # )
                    filter_domain_specific = gr.CheckboxGroup(
                        label="Domain Specificity",
                        choices=["πŸ₯  Clinical models", "Generic models"],
                        value=["πŸ₯  Clinical models", "Generic models"],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )

            datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="open_ended")

            leaderboard_table = gr.components.Dataframe(
                value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=datasets_original_df[OPEN_ENDED_COLS],
                headers=OPEN_ENDED_COLS,
                datatype=TYPES,
                visible=False,
            )

                        
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    search_bar,
                    filter_columns_type,
                    filter_domain_specific,
                    filter_columns_size
                    # filter_columns_architecture
                ],
                leaderboard_table,
            )
            for selector in [
                shown_columns,
                filter_columns_type,
                filter_domain_specific,
                # filter_columns_architecture,
                filter_columns_size,
                # deleted_models_visibility,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        search_bar,
                        filter_columns_type,
                        filter_domain_specific,
                        filter_columns_size
                        # filter_columns_architecture,
                    ],
                    leaderboard_table,
                    queue=True,
                )
            with gr.Accordion("πŸ’¬ Generation templates", open=False):
                with gr.Accordion("Response generation", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
                with gr.Accordion("Scoring Rubric", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
        with gr.TabItem("πŸ… Med Safety", elem_id="llm-benchmark-tab-table", id=2):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    # with gr.Row():
                    #     deleted_models_visibility = gr.Checkbox(
                    #         value=False, label="Show gated/private/deleted models", interactive=True
                    #     )
                with gr.Column(min_width=320):
                    # with gr.Box(elem_id="box-filter"):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model Types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    # filter_columns_architecture = gr.CheckboxGroup(
                    #     label="Architecture Types",
                    #     choices=[i.value.name for i in ModelArch],
                    #     value=[i.value.name for i in ModelArch],
                    #     interactive=True,
                    #     elem_id="filter-columns-architecture",
                    # )
                    filter_domain_specific = gr.CheckboxGroup(
                        label="Domain Specificity",
                        choices=["πŸ₯  Clinical models", "Generic models"],
                        value=["πŸ₯  Clinical models", "Generic models"],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )

            datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")

            leaderboard_table = gr.components.Dataframe(
                value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=datasets_original_df[MED_SAFETY_COLS],
                headers=MED_SAFETY_COLS,
                datatype=TYPES,
                visible=False,
            )

                        
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    search_bar,
                    filter_columns_type,
                    filter_domain_specific,
                    filter_columns_size
                    # filter_columns_architecture
                ],
                leaderboard_table,
            )
            for selector in [
                shown_columns,
                filter_columns_type,
                filter_domain_specific,
                filter_columns_size,
                # deleted_models_visibility,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        search_bar,
                        filter_columns_type,
                        filter_domain_specific,
                        filter_columns_size
                    ],
                    leaderboard_table,
                    queue=True,
                )
            with gr.Accordion("πŸ’¬ Generation templates", open=False):
                with gr.Accordion("Response generation", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
                with gr.Accordion("Scoring Rubric", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
        with gr.TabItem("πŸ… Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    # with gr.Row():
                    #     deleted_models_visibility = gr.Checkbox(
                    #         value=False, label="Show gated/private/deleted models", interactive=True
                    #     )
                with gr.Column(min_width=320):
                    # with gr.Box(elem_id="box-filter"):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model Types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    # filter_columns_architecture = gr.CheckboxGroup(
                    #     label="Architecture Types",
                    #     choices=[i.value.name for i in ModelArch],
                    #     value=[i.value.name for i in ModelArch],
                    #     interactive=True,
                    #     elem_id="filter-columns-architecture",
                    # )
                    filter_domain_specific = gr.CheckboxGroup(
                        label="Domain Specificity",
                        choices=["πŸ₯  Clinical models", "Generic models"],
                        value=["πŸ₯  Clinical models", "Generic models"],
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )

            datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")

            leaderboard_table = gr.components.Dataframe(
                value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
                headers=MEDICAL_SUMMARIZATION_COLS,
                datatype=TYPES,
                visible=False,
            )

                        
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    search_bar,
                    filter_columns_type,
                    filter_domain_specific,
                    filter_columns_size
                    # filter_columns_architecture
                ],
                leaderboard_table,
            )
            for selector in [
                shown_columns,
                filter_columns_type,
                filter_domain_specific,
                filter_columns_size,
                # deleted_models_visibility,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        search_bar,
                        filter_columns_type,
                        filter_domain_specific,
                        filter_columns_size
                    ],
                    leaderboard_table,
                    queue=True,
                )
            with gr.Accordion("πŸ’¬ Generation templates", open=False):
                with gr.Accordion("Response generation", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
                with gr.Accordion("Question generation", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
                with gr.Accordion("Cross Examination", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")  
        with gr.TabItem("πŸ… Note generation", elem_id="llm-benchmark-tab-table", id=4):
            gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
            with gr.Tabs(elem_classes="tab-buttons2") as tabs:
                with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-table2", id=0):
                    with gr.Row():
                        with gr.Column():
                            with gr.Row():
                                search_bar = gr.Textbox(
                                    placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                                    show_label=False,
                                    elem_id="search-bar",
                                )
                            with gr.Row():
                                shown_columns = gr.CheckboxGroup(
                                    choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
                                    value=[
                                        c.name
                                        for c in fields(AutoEvalColumn)
                                        if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
                                    ],
                                    label="Select columns to show",
                                    elem_id="column-select",
                                    interactive=True,
                                )
                            # with gr.Row():
                            #     deleted_models_visibility = gr.Checkbox(
                            #         value=False, label="Show gated/private/deleted models", interactive=True
                            #     )
                        with gr.Column(min_width=320):
                            # with gr.Box(elem_id="box-filter"):
                            filter_columns_type = gr.CheckboxGroup(
                                label="Model Types",
                                choices=[t.to_str() for t in ModelType],
                                value=[t.to_str() for t in ModelType],
                                interactive=True,
                                elem_id="filter-columns-type",
                            )
                            # filter_columns_architecture = gr.CheckboxGroup(
                            #     label="Architecture Types",
                            #     choices=[i.value.name for i in ModelArch],
                            #     value=[i.value.name for i in ModelArch],
                            #     interactive=True,
                            #     elem_id="filter-columns-architecture",
                            # )
                            filter_domain_specific = gr.CheckboxGroup(
                                label="Domain Specificity",
                                choices=["πŸ₯  Clinical models", "Generic models"],
                                value=["πŸ₯  Clinical models", "Generic models"],
                                interactive=True,
                                elem_id="filter-columns-type",
                            )
                            filter_columns_size = gr.CheckboxGroup(
                                label="Model sizes (in billions of parameters)",
                                choices=list(NUMERIC_INTERVALS.keys()),
                                value=list(NUMERIC_INTERVALS.keys()),
                                interactive=True,
                                elem_id="filter-columns-size",
                            )

                    datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")

                    leaderboard_table = gr.components.Dataframe(
                        value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
                        headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                        datatype=TYPES,
                        elem_id="leaderboard-table",
                        interactive=False,
                        visible=True,
                    )

                    # Dummy leaderboard for handling the case when the user uses backspace key
                    hidden_leaderboard_table_for_search = gr.components.Dataframe(
                        value=datasets_original_df[ACI_COLS],
                        headers=ACI_COLS,
                        datatype=TYPES,
                        visible=False,
                    )

                                
                    search_bar.submit(
                        update_table,
                        [
                            hidden_leaderboard_table_for_search,
                            shown_columns,
                            search_bar,
                            filter_columns_type,
                            filter_domain_specific,
                            filter_columns_size
                            # filter_columns_architecture
                        ],
                        leaderboard_table,
                    )
                    for selector in [
                        shown_columns,
                        filter_columns_type,
                        filter_domain_specific,
                        filter_columns_size,
                        # deleted_models_visibility,
                    ]:
                        selector.change(
                            update_table,
                            [
                                hidden_leaderboard_table_for_search,
                                shown_columns,
                                search_bar,
                                filter_columns_type,
                                filter_domain_specific,
                                filter_columns_size
                            ],
                            leaderboard_table,
                            queue=True,
                        )
                with gr.TabItem("SOAP Notes", elem_id="llm-benchmark-tab-table2", id=1):
                    with gr.Row():
                        with gr.Column():
                            with gr.Row():
                                search_bar = gr.Textbox(
                                    placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                                    show_label=False,
                                    elem_id="search-bar",
                                )
                            with gr.Row():
                                shown_columns = gr.CheckboxGroup(
                                    choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
                                    value=[
                                        c.name
                                        for c in fields(AutoEvalColumn)
                                        if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
                                    ],
                                    label="Select columns to show",
                                    elem_id="column-select",
                                    interactive=True,
                                )
                            # with gr.Row():
                            #     deleted_models_visibility = gr.Checkbox(
                            #         value=False, label="Show gated/private/deleted models", interactive=True
                            #     )
                        with gr.Column(min_width=320):
                            # with gr.Box(elem_id="box-filter"):
                            filter_columns_type = gr.CheckboxGroup(
                                label="Model Types",
                                choices=[t.to_str() for t in ModelType],
                                value=[t.to_str() for t in ModelType],
                                interactive=True,
                                elem_id="filter-columns-type",
                            )
                            # filter_columns_architecture = gr.CheckboxGroup(
                            #     label="Architecture Types",
                            #     choices=[i.value.name for i in ModelArch],
                            #     value=[i.value.name for i in ModelArch],
                            #     interactive=True,
                            #     elem_id="filter-columns-architecture",
                            # )
                            filter_domain_specific = gr.CheckboxGroup(
                                label="Domain Specificity",
                                choices=["πŸ₯  Clinical models", "Generic models"],
                                value=["πŸ₯  Clinical models", "Generic models"],
                                interactive=True,
                                elem_id="filter-columns-type",
                            )
                            filter_columns_size = gr.CheckboxGroup(
                                label="Model sizes (in billions of parameters)",
                                choices=list(NUMERIC_INTERVALS.keys()),
                                value=list(NUMERIC_INTERVALS.keys()),
                                interactive=True,
                                elem_id="filter-columns-size",
                            )

                    datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")

                    leaderboard_table = gr.components.Dataframe(
                        value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
                        headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                        datatype=TYPES,
                        elem_id="leaderboard-table",
                        interactive=False,
                        visible=True,
                    )

                    # Dummy leaderboard for handling the case when the user uses backspace key
                    hidden_leaderboard_table_for_search = gr.components.Dataframe(
                        value=datasets_original_df[SOAP_COLS],
                        headers=SOAP_COLS,
                        datatype=TYPES,
                        visible=False,
                    )

                                
                    search_bar.submit(
                        update_table,
                        [
                            hidden_leaderboard_table_for_search,
                            shown_columns,
                            search_bar,
                            filter_columns_type,
                            filter_domain_specific,
                            filter_columns_size
                            # filter_columns_architecture
                        ],
                        leaderboard_table,
                    )
                    for selector in [
                        shown_columns,
                        filter_columns_type,
                        filter_domain_specific,
                        filter_columns_size,
                        # deleted_models_visibility,
                    ]:
                        selector.change(
                            update_table,
                            [
                                hidden_leaderboard_table_for_search,
                                shown_columns,
                                search_bar,
                                filter_columns_type,
                                filter_domain_specific,
                                filter_columns_size
                            ],
                            leaderboard_table,
                            queue=True,
                        )
            with gr.Accordion("πŸ’¬ Generation templates", open=False):
                with gr.Accordion("ACI-Bench Response generation", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
                with gr.Accordion("SOAP Notes Response generation", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="soap", generation_type="response_generation")
                with gr.Accordion("Question generation", open=False):
                    system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
                with gr.Accordion("Cross Examination", open=False):
                        system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")  
        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=5):
            gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
            gr.HTML(FIVE_PILLAR_DIAGRAM)
            gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
            # gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo")
            # gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text")
            # gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo")
            # gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text")
            
        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=6):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")                    
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="auto",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value=WeightType.Original.value.name,
                        interactive=False,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", interactive=False)
            with gr.Row():
                domain_specific_toggle = gr.Checkbox(
                    label="Domain specific", 
                    value=False,
                    info="Is your model medically oriented?",
                )
                chat_template_toggle = gr.Checkbox(
                    label="Use chat template", 
                    value=False,
                    info="Is your model a chat model?",
                )

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    model_type,
                    domain_specific_toggle,
                    chat_template_toggle,
                    precision,
                    weight_type
                ],
                submission_result,
            )


    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])