File size: 9,834 Bytes
eb61b6f
c64cd4d
1d06677
 
 
 
 
eb61b6f
c64cd4d
 
 
 
 
 
 
 
 
 
eb61b6f
c64cd4d
1d06677
 
 
 
 
 
1fe4523
1d06677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe4523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64cd4d
 
 
 
 
 
 
 
 
 
 
 
1d06677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64cd4d
 
1fe4523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64cd4d
 
 
 
eb61b6f
 
 
1d06677
 
 
 
 
1fe4523
1d06677
 
 
 
eb61b6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
from sae_auto_interp.sae import Sae
from sae_auto_interp.utils import maybe_load_llava_model, load_single_sae
from sae_auto_interp.features.features import upsample_mask
import torch
from transformers import AutoTokenizer
from PIL import Image

CITATION_BUTTON_TEXT = """
@misc{zhang2024largemultimodalmodelsinterpret,
      title={Large Multi-modal Models Can Interpret Features in Large Multi-modal Models},
      author={Kaichen Zhang and Yifei Shen and Bo Li and Ziwei Liu},
      year={2024},
      eprint={2411.14982},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2411.14982},
}
"""

cached_tensor = None
topk_indices = None

sunglasses_file_path = "assets/sunglasses.jpg"
greedy_file_path = "assets/greedy.jpg"
railway_file_path = "assets/railway.jpg"
happy_file_path = "assets/happy.jpg"


def generate_activations(image):
    prompt = "<image>"
    inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
    global cached_tensor, topk_indices

    def hook(module: torch.nn.Module, _, outputs):
        global cached_tensor, topk_indices
        # Maybe unpack tuple outputs
        if isinstance(outputs, tuple):
            unpack_outputs = list(outputs)
        else:
            unpack_outputs = list(outputs)
        latents = sae.pre_acts(unpack_outputs[0])
        # When the tokenizer is llama and text is None (image only)
        # I skip the first bos tokens
        if "llama" in tokenizer.name_or_path:
            latents = latents[:, 1:, :]

        topk = torch.topk(
            latents, k=sae.cfg.k, dim=-1
        )
        # make all other values 0
        result = torch.zeros_like(latents)
        # results (bs, seq, num_latents)
        result.scatter_(-1, topk.indices, topk.values)
        cached_tensor = result.detach().cpu()
        topk_indices = (
            latents.squeeze(0).mean(dim=0).topk(k=100).indices.detach().cpu()
        )

    handles = [hooked_module.register_forward_hook(hook)]
    try:
        with torch.no_grad():
            outputs = model(
                input_ids=inputs["input_ids"].to("cuda"),
                pixel_values=inputs["pixel_values"].to("cuda"),
                image_sizes=inputs["image_sizes"].to("cuda"),
                attention_mask=inputs["attention_mask"].to("cuda"),
            )
    finally:
        for handle in handles:
            handle.remove()
    
    torch.cuda.empty_cache()
    return topk_indices
    

def visualize_activations(image, feature_num):
    base_img_tokens = 576
    patch_size = 24
    # Using Cached tensor
    # select the feature_num-th feature
    # Then keeping the first 576 tokens
    base_image_activations = cached_tensor[0, :base_img_tokens, feature_num].view(patch_size, patch_size)

    upsampled_image_mask = upsample_mask(base_image_activations, (336, 336))
    

    background = Image.new("L", (336, 336), 0).convert("RGB")

    # Somehow as I looked closer into the llava-hf preprocessing code,
    # I found out that they don't use the padded image as the base image feat
    # but use the simple resized image. This is different from original llava but
    # we align to llava-hf for now as we use llava-hf
    resized_image = image.resize((336, 336))
    activation_images = Image.composite(background, resized_image, upsampled_image_mask).convert("RGB")

    return activation_images

def clamp_features_max(
    sae: Sae, feature: int, hooked_module: torch.nn.Module, k: float = 10
):
    def hook(module: torch.nn.Module, _, outputs):
        # Maybe unpack tuple outputs
        if isinstance(outputs, tuple):
            unpack_outputs = list(outputs)
        else:
            unpack_outputs = list(outputs)
        latents = sae.pre_acts(unpack_outputs[0])
        # Only clamp the feature for the first forward
        if latents.shape[1] != 1:
            latents[:, :, feature] = k
        top_acts, top_indices = sae.select_topk(latents)
        sae_out = sae.decode(top_acts[0], top_indices[0]).unsqueeze(0).to(torch.float16)
        unpack_outputs[0] = sae_out
        if isinstance(outputs, tuple):
            outputs = tuple(unpack_outputs)
        else:
            outputs = unpack_outputs[0]
        return outputs

    handles = [hooked_module.register_forward_hook(hook)]

    return handles

def generate_with_clamp(feature_idx, feature_strength, text, image, chat_history):
    if not isinstance(feature_idx, int):
        feature_idx = int(feature_idx)
    if not isinstance(feature_strength, float):
        feature_strength = float(feature_strength)
    
    conversation = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": text},
            ],
        },
    ]
    if image is not None:
        conversation[0]["content"].append(
            {"type": "image"},
        )

        chat_history.append({"role": "user", "content": gr.Image(value=image)})
    chat_history.append({"role": "user", "content": text})
    

    prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

    inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
    handles = clamp_features_max(sae, feature_idx, hooked_module, k=feature_strength)
    try:
        with torch.no_grad():
            output = model.generate(**inputs, max_new_tokens=512)
        cont = output[:, inputs["input_ids"].shape[-1] :]
    finally:
        for handle in handles:
            handle.remove()

    text = processor.batch_decode(cont, skip_special_tokens=True)[0]
    chat_history.append(
        {
            "role": "assistant",
            "content": text,
        }
    )

    return chat_history


with gr.Blocks() as demo:
    gr.Markdown(
        """
        # Large Multi-modal Models Can Interpret Features in Large Multi-modal Models

        πŸ” [ArXiv Paper](https://arxiv.org/abs/2411.14982) | 🏠 [LMMs-Lab Homepage](https://lmms-lab.framer.ai) | πŸ€— [Huggingface Collections](https://huggingface.co./collections/lmms-lab/llava-sae-674026e4e7bc8c29c70bc3a3)
        """
    )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("Visualization of Activations", elem_id="visualization", id=0):
            with gr.Row():
                with gr.Column():
                    image = gr.Image(type="pil", interactive=True, label="Sample Image")
                    topk_features = gr.Textbox(value=topk_indices, placeholder="Top 100 Features", label="Top 100 Features")
                    with gr.Row():
                        clear_btn = gr.ClearButton([image, topk_features], value="Clear")
                        submit_btn = gr.Button("Submit", variant="primary")
                        submit_btn.click(generate_activations, inputs=[image], outputs=[topk_features])
                with gr.Column():
                    output = gr.Image(label="Activation Visualization")
                    feature_num = gr.Slider(1, 131072, 1, 1, label="Feature Number", interactive=True)
                    visualize_btn = gr.Button("Visualize", variant="primary")
                    visualize_btn.click(visualize_activations, inputs=[image, feature_num], outputs=[output])
                
            dummy_text = gr.Textbox(visible=False, label="Explanation")
            gr.Examples(
                [
                    ["assets/sunglasses.jpg", 10, "Sunglasses"],
                    ["assets/greedy.jpg", 14, "Greedy eating"],
                    ["assets/railway.jpg", 28, "Railway tracks"],
                ],
                inputs=[image, feature_num, dummy_text],
                label="Examples",
            )

        with gr.TabItem("Steering Model", elem_id="steering", id=2):
            chatbot = gr.Chatbot(type="messages")
            with gr.Row(variant="compact", equal_height=True):
                feature_num = gr.Slider(1, 131072, 1, 1, label="Feature Number", interactive=True)
                feature_strength = gr.Number(value=50, label="Feature Strength", interactive=True)
            with gr.Row(variant="compact", equal_height=True):
                text_input = gr.Textbox(label="Text Input", placeholder="Type here", interactive=True)
                image_input = gr.Image(type="pil", label="Image Input", interactive=True, height=250)
            with gr.Row():
                chatbot_clear = gr.ClearButton([text_input, image_input, chatbot], value="Clear")
                chatbot_submit = gr.Button("Submit", variant="primary")
                chatbot_submit.click(
                    generate_with_clamp,
                    inputs=[feature_num, feature_strength, text_input, image_input, chatbot],
                    outputs=[chatbot],
                )
            gr.Examples(
                [
                    [19379, 50, "Look at this image, what is your feeling right now?", happy_file_path],
                    [14, 50, "Tell me a story about Alice and Bob", None],
                    [108692, 50, "What is your feeling right now?", None],
                ],
                inputs=[feature_num, feature_strength, text_input, image_input],
                label="Examples",
            )
            

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Markdown("```bib\n" + CITATION_BUTTON_TEXT + "\n```")


if __name__ == "__main__":
    tokenizer = AutoTokenizer.from_pretrained("llava-hf/llama3-llava-next-8b-hf")
    sae = load_single_sae("lmms-lab/llama3-llava-next-8b-hf-sae-131k", "model.layers.24")
    model, processor = maybe_load_llava_model(
        "llava-hf/llama3-llava-next-8b-hf",
        rank=0,
        dtype=torch.float16,
        hf_token=None
    )
    hooked_module = model.language_model.get_submodule("model.layers.24")

    demo.launch()