Spaces:
Running
on
Zero
Running
on
Zero
Update image visualization
Browse files- .gitignore +1 -0
- Makefile +7 -1
- app.py +117 -41
- assets/greedy.jpg +0 -0
- assets/railway.jpg +0 -0
- assets/sunglasses.jpg +0 -0
- requirements.txt +2 -1
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
|
2 |
__pycache__
|
|
|
|
1 |
|
2 |
__pycache__
|
3 |
+
.vscode
|
Makefile
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
.PHONY: style format
|
2 |
|
3 |
|
4 |
style:
|
@@ -11,3 +11,9 @@ quality:
|
|
11 |
python -m black --check --line-length 119 .
|
12 |
python -m isort --check-only .
|
13 |
ruff check .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.PHONY: style format start clean
|
2 |
|
3 |
|
4 |
style:
|
|
|
11 |
python -m black --check --line-length 119 .
|
12 |
python -m isort --check-only .
|
13 |
ruff check .
|
14 |
+
|
15 |
+
start:
|
16 |
+
gradio app.py
|
17 |
+
|
18 |
+
clean:
|
19 |
+
ps aux | grep "app" | grep -v "grep" | awk '{print $$2}' | xargs kill -9
|
app.py
CHANGED
@@ -1,45 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
from sae_auto_interp.sae import Sae
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
def respond(
|
12 |
-
message,
|
13 |
-
history: list[tuple[str, str]],
|
14 |
-
system_message,
|
15 |
-
max_tokens,
|
16 |
-
temperature,
|
17 |
-
top_p,
|
18 |
-
):
|
19 |
-
messages = [{"role": "system", "content": system_message}]
|
20 |
-
|
21 |
-
for val in history:
|
22 |
-
if val[0]:
|
23 |
-
messages.append({"role": "user", "content": val[0]})
|
24 |
-
if val[1]:
|
25 |
-
messages.append({"role": "assistant", "content": val[1]})
|
26 |
-
|
27 |
-
messages.append({"role": "user", "content": message})
|
28 |
-
|
29 |
-
response = ""
|
30 |
-
|
31 |
-
for message in client.chat_completion(
|
32 |
-
messages,
|
33 |
-
max_tokens=max_tokens,
|
34 |
-
stream=True,
|
35 |
-
temperature=temperature,
|
36 |
-
top_p=top_p,
|
37 |
-
):
|
38 |
-
token = message.choices[0].delta.content
|
39 |
-
|
40 |
-
response += token
|
41 |
-
yield response
|
42 |
-
|
43 |
|
44 |
CITATION_BUTTON_TEXT = """
|
45 |
@misc{zhang2024largemultimodalmodelsinterpret,
|
@@ -53,6 +18,84 @@ CITATION_BUTTON_TEXT = """
|
|
53 |
}
|
54 |
"""
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
with gr.Blocks() as demo:
|
58 |
gr.Markdown(
|
@@ -65,7 +108,30 @@ with gr.Blocks() as demo:
|
|
65 |
|
66 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
67 |
with gr.TabItem("Visualization of Activations", elem_id="visualization", id=0):
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
with gr.TabItem("Steering Model", elem_id="steering", id=2):
|
71 |
chatbot = gr.Chatbot()
|
@@ -76,4 +142,14 @@ with gr.Blocks() as demo:
|
|
76 |
|
77 |
|
78 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from sae_auto_interp.sae import Sae
|
3 |
+
from sae_auto_interp.utils import maybe_load_llava_model, load_single_sae
|
4 |
+
from sae_auto_interp.features.features import upsample_mask
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
CITATION_BUTTON_TEXT = """
|
10 |
@misc{zhang2024largemultimodalmodelsinterpret,
|
|
|
18 |
}
|
19 |
"""
|
20 |
|
21 |
+
cached_tensor = None
|
22 |
+
topk_indices = None
|
23 |
+
|
24 |
+
sunglasses_file_path = "assets/sunglasses.jpg"
|
25 |
+
greedy_file_path = "assets/greedy.jpg"
|
26 |
+
railway_file_path = "assets/railway.jpg"
|
27 |
+
|
28 |
+
|
29 |
+
def generate_activations(image):
|
30 |
+
prompt = "<image>"
|
31 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
|
32 |
+
global cached_tensor, topk_indices
|
33 |
+
|
34 |
+
def hook(module: torch.nn.Module, _, outputs):
|
35 |
+
global cached_tensor, topk_indices
|
36 |
+
# Maybe unpack tuple outputs
|
37 |
+
if isinstance(outputs, tuple):
|
38 |
+
unpack_outputs = list(outputs)
|
39 |
+
else:
|
40 |
+
unpack_outputs = list(outputs)
|
41 |
+
latents = sae.pre_acts(unpack_outputs[0])
|
42 |
+
# When the tokenizer is llama and text is None (image only)
|
43 |
+
# I skip the first bos tokens
|
44 |
+
if "llama" in tokenizer.name_or_path:
|
45 |
+
latents = latents[:, 1:, :]
|
46 |
+
|
47 |
+
topk = torch.topk(
|
48 |
+
latents, k=sae.cfg.k, dim=-1
|
49 |
+
)
|
50 |
+
# make all other values 0
|
51 |
+
result = torch.zeros_like(latents)
|
52 |
+
# results (bs, seq, num_latents)
|
53 |
+
result.scatter_(-1, topk.indices, topk.values)
|
54 |
+
cached_tensor = result.detach().cpu()
|
55 |
+
topk_indices = (
|
56 |
+
latents.squeeze(0).mean(dim=0).topk(k=100).indices.detach().cpu()
|
57 |
+
)
|
58 |
+
|
59 |
+
handles = [hooked_module.register_forward_hook(hook)]
|
60 |
+
try:
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(
|
63 |
+
input_ids=inputs["input_ids"].to("cuda"),
|
64 |
+
pixel_values=inputs["pixel_values"].to("cuda"),
|
65 |
+
image_sizes=inputs["image_sizes"].to("cuda"),
|
66 |
+
attention_mask=inputs["attention_mask"].to("cuda"),
|
67 |
+
)
|
68 |
+
finally:
|
69 |
+
for handle in handles:
|
70 |
+
handle.remove()
|
71 |
+
|
72 |
+
print(cached_tensor.shape)
|
73 |
+
torch.cuda.empty_cache()
|
74 |
+
return topk_indices
|
75 |
+
|
76 |
+
|
77 |
+
def visualize_activations(image, feature_num):
|
78 |
+
base_img_tokens = 576
|
79 |
+
patch_size = 24
|
80 |
+
# Using Cached tensor
|
81 |
+
# select the feature_num-th feature
|
82 |
+
# Then keeping the first 576 tokens
|
83 |
+
base_image_activations = cached_tensor[0, :base_img_tokens, feature_num].view(patch_size, patch_size)
|
84 |
+
|
85 |
+
upsampled_image_mask = upsample_mask(base_image_activations, (336, 336))
|
86 |
+
|
87 |
+
|
88 |
+
background = Image.new("L", (336, 336), 0).convert("RGB")
|
89 |
+
|
90 |
+
# Somehow as I looked closer into the llava-hf preprocessing code,
|
91 |
+
# I found out that they don't use the padded image as the base image feat
|
92 |
+
# but use the simple resized image. This is different from original llava but
|
93 |
+
# we align to llava-hf for now as we use llava-hf
|
94 |
+
resized_image = image.resize((336, 336))
|
95 |
+
activation_images = Image.composite(background, resized_image, upsampled_image_mask).convert("RGB")
|
96 |
+
|
97 |
+
return activation_images
|
98 |
+
|
99 |
|
100 |
with gr.Blocks() as demo:
|
101 |
gr.Markdown(
|
|
|
108 |
|
109 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
110 |
with gr.TabItem("Visualization of Activations", elem_id="visualization", id=0):
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
image = gr.Image(type="pil", interactive=True, label="Sample Image")
|
114 |
+
topk_features = gr.Textbox(value=topk_indices, placeholder="Top 100 Features", label="Top 100 Features")
|
115 |
+
with gr.Row():
|
116 |
+
clear_btn = gr.ClearButton([image, topk_features], value="Clear")
|
117 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
118 |
+
submit_btn.click(generate_activations, inputs=[image], outputs=[topk_features])
|
119 |
+
with gr.Column():
|
120 |
+
output = gr.Image(label="Activation Visualization")
|
121 |
+
feature_num = gr.Slider(1, 131072, 1, 1, label="Feature Number", interactive=True)
|
122 |
+
visualize_btn = gr.Button("Visualize", variant="primary")
|
123 |
+
visualize_btn.click(visualize_activations, inputs=[image, feature_num], outputs=[output])
|
124 |
+
|
125 |
+
dummy_text = gr.Textbox(visible=False, label="Explanation")
|
126 |
+
gr.Examples(
|
127 |
+
[
|
128 |
+
["assets/sunglasses.jpg", 10, "Sunglasses"],
|
129 |
+
["assets/greedy.jpg", 14, "Greedy eating"],
|
130 |
+
["assets/railway.jpg", 28, "Railway tracks"],
|
131 |
+
],
|
132 |
+
inputs=[image, feature_num, dummy_text],
|
133 |
+
label="Examples",
|
134 |
+
)
|
135 |
|
136 |
with gr.TabItem("Steering Model", elem_id="steering", id=2):
|
137 |
chatbot = gr.Chatbot()
|
|
|
142 |
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained("llava-hf/llama3-llava-next-8b-hf")
|
146 |
+
sae = load_single_sae("lmms-lab/llama3-llava-next-8b-hf-sae-131k", "model.layers.24")
|
147 |
+
model, processor = maybe_load_llava_model(
|
148 |
+
"llava-hf/llama3-llava-next-8b-hf",
|
149 |
+
rank=0,
|
150 |
+
dtype=torch.bfloat16,
|
151 |
+
hf_token=None
|
152 |
+
)
|
153 |
+
hooked_module = model.language_model.get_submodule("model.layers.24")
|
154 |
+
|
155 |
demo.launch()
|
assets/greedy.jpg
ADDED
![]() |
assets/railway.jpg
ADDED
![]() |
assets/sunglasses.jpg
ADDED
![]() |
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
gradio
|
3 |
-
sae_auto_interp @ git+https://github.com/EvolvingLMMs-Lab/multimodal-sae
|
|
|
|
1 |
huggingface_hub==0.25.2
|
2 |
gradio
|
3 |
+
sae_auto_interp @ git+https://github.com/EvolvingLMMs-Lab/multimodal-sae
|
4 |
+
fastapi==0.112.2
|