Spaces:
Runtime error
Runtime error
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Backbone modules. | |
""" | |
from collections import OrderedDict | |
import torch | |
import torch.nn.functional as F | |
import torchvision | |
from timm.models import create_model | |
from torch import nn | |
from torchvision.models._utils import IntermediateLayerGetter | |
from cliport.models.misc import NestedTensor | |
class FrozenBatchNorm2d(torch.nn.Module): | |
""" | |
BatchNorm2d where the batch statistics and the affine parameters are fixed. | |
Copy-paste from torchvision.misc.ops with added eps before rqsrt, | |
without which any other models than torchvision.models.resnet[18,34,50,101] | |
produce nans. | |
""" | |
def __init__(self, n): | |
super(FrozenBatchNorm2d, self).__init__() | |
self.register_buffer("weight", torch.ones(n)) | |
self.register_buffer("bias", torch.zeros(n)) | |
self.register_buffer("running_mean", torch.zeros(n)) | |
self.register_buffer("running_var", torch.ones(n)) | |
def _load_from_state_dict( | |
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs | |
): | |
num_batches_tracked_key = prefix + "num_batches_tracked" | |
if num_batches_tracked_key in state_dict: | |
del state_dict[num_batches_tracked_key] | |
super(FrozenBatchNorm2d, self)._load_from_state_dict( | |
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs | |
) | |
def forward(self, x): | |
# move reshapes to the beginning | |
# to make it fuser-friendly | |
w = self.weight.reshape(1, -1, 1, 1) | |
b = self.bias.reshape(1, -1, 1, 1) | |
rv = self.running_var.reshape(1, -1, 1, 1) | |
rm = self.running_mean.reshape(1, -1, 1, 1) | |
eps = 1e-5 | |
scale = w * (rv + eps).rsqrt() | |
bias = b - rm * scale | |
return x * scale + bias | |
class BackboneBase(nn.Module): | |
def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool): | |
super().__init__() | |
for name, parameter in backbone.named_parameters(): | |
if not train_backbone or "layer2" not in name and "layer3" not in name and "layer4" not in name: | |
parameter.requires_grad_(False) | |
if return_interm_layers: | |
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} | |
else: | |
return_layers = {"layer4": 0} | |
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) | |
self.num_channels = num_channels | |
def forward(self, tensor_list): | |
xs = self.body(tensor_list.tensors) | |
out = OrderedDict() | |
for name, x in xs.items(): | |
mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0] | |
out[name] = NestedTensor(x, mask) | |
return out | |
class Backbone(BackboneBase): | |
"""ResNet backbone with frozen BatchNorm.""" | |
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool): | |
backbone = getattr(torchvision.models, name)( | |
replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=FrozenBatchNorm2d | |
) | |
num_channels = 512 if name in ("resnet18", "resnet34") else 2048 | |
super().__init__(backbone, train_backbone, num_channels, return_interm_layers) | |
class GroupNorm32(torch.nn.GroupNorm): | |
def __init__(self, num_channels, num_groups=32, **kargs): | |
super().__init__(num_groups, num_channels, **kargs) | |
class GroupNormBackbone(BackboneBase): | |
"""ResNet backbone with GroupNorm with 32 channels.""" | |
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool): | |
name_map = { | |
"resnet50-gn": ("resnet50", "/checkpoint/szagoruyko/imagenet/22014122/checkpoint.pth"), | |
"resnet101-gn": ("resnet101", "/checkpoint/szagoruyko/imagenet/22080524/checkpoint.pth"), | |
} | |
backbone = getattr(torchvision.models, name_map[name][0])( | |
replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=GroupNorm32 | |
) | |
checkpoint = torch.load(name_map[name][1], map_location="cpu") | |
state_dict = {k[7:]: p for k, p in checkpoint["model"].items()} | |
backbone.load_state_dict(state_dict) | |
num_channels = 512 if name_map[name][0] in ("resnet18", "resnet34") else 2048 | |
super().__init__(backbone, train_backbone, num_channels, return_interm_layers) | |
def replace_bn(m, name=""): | |
for attr_str in dir(m): | |
target_attr = getattr(m, attr_str) | |
if isinstance(target_attr, torch.nn.BatchNorm2d): | |
frozen = FrozenBatchNorm2d(target_attr.num_features) | |
bn = getattr(m, attr_str) | |
frozen.weight.data.copy_(bn.weight) | |
frozen.bias.data.copy_(bn.bias) | |
frozen.running_mean.data.copy_(bn.running_mean) | |
frozen.running_var.data.copy_(bn.running_var) | |
setattr(m, attr_str, frozen) | |
for n, ch in m.named_children(): | |
replace_bn(ch, n) | |
class GN_8(nn.Module): | |
def __init__(self, num_channels): | |
super().__init__() | |
self.gn = torch.nn.GroupNorm(8, num_channels) | |
def forward(self, x): | |
return self.gn(x) | |
class TimmBackbone(nn.Module): | |
def __init__(self, name, return_interm_layers, main_layer=-1, group_norm=False): | |
super().__init__() | |
backbone = create_model(name, pretrained=True, in_chans=3, features_only=True, out_indices=(1, 2, 3, 4)) | |
with torch.no_grad(): | |
replace_bn(backbone) | |
num_channels = backbone.feature_info.channels()[-1] | |
self.body = backbone | |
self.num_channels = num_channels | |
self.interm = return_interm_layers | |
self.main_layer = main_layer | |
def forward(self, tensor_list): | |
xs = self.body(tensor_list.tensors) | |
if not self.interm: | |
xs = [xs[self.main_layer]] | |
out = OrderedDict() | |
for i, x in enumerate(xs): | |
mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0] | |
out[f"layer{i}"] = NestedTensor(x, mask) | |
return out | |