File size: 6,327 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Backbone modules.
"""
from collections import OrderedDict

import torch
import torch.nn.functional as F
import torchvision
from timm.models import create_model
from torch import nn
from torchvision.models._utils import IntermediateLayerGetter

from cliport.models.misc import NestedTensor



class FrozenBatchNorm2d(torch.nn.Module):
    """
    BatchNorm2d where the batch statistics and the affine parameters are fixed.

    Copy-paste from torchvision.misc.ops with added eps before rqsrt,
    without which any other models than torchvision.models.resnet[18,34,50,101]
    produce nans.
    """

    def __init__(self, n):
        super(FrozenBatchNorm2d, self).__init__()
        self.register_buffer("weight", torch.ones(n))
        self.register_buffer("bias", torch.zeros(n))
        self.register_buffer("running_mean", torch.zeros(n))
        self.register_buffer("running_var", torch.ones(n))

    def _load_from_state_dict(
        self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
    ):
        num_batches_tracked_key = prefix + "num_batches_tracked"
        if num_batches_tracked_key in state_dict:
            del state_dict[num_batches_tracked_key]

        super(FrozenBatchNorm2d, self)._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
        )

    def forward(self, x):
        # move reshapes to the beginning
        # to make it fuser-friendly
        w = self.weight.reshape(1, -1, 1, 1)
        b = self.bias.reshape(1, -1, 1, 1)
        rv = self.running_var.reshape(1, -1, 1, 1)
        rm = self.running_mean.reshape(1, -1, 1, 1)
        eps = 1e-5
        scale = w * (rv + eps).rsqrt()
        bias = b - rm * scale
        return x * scale + bias


class BackboneBase(nn.Module):
    def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool):
        super().__init__()
        for name, parameter in backbone.named_parameters():
            if not train_backbone or "layer2" not in name and "layer3" not in name and "layer4" not in name:
                parameter.requires_grad_(False)
        if return_interm_layers:
            return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
        else:
            return_layers = {"layer4": 0}
        self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
        self.num_channels = num_channels

    def forward(self, tensor_list):
        xs = self.body(tensor_list.tensors)
        out = OrderedDict()
        for name, x in xs.items():
            mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0]
            out[name] = NestedTensor(x, mask)
        return out


class Backbone(BackboneBase):
    """ResNet backbone with frozen BatchNorm."""

    def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
        backbone = getattr(torchvision.models, name)(
            replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=FrozenBatchNorm2d
        )
        num_channels = 512 if name in ("resnet18", "resnet34") else 2048
        super().__init__(backbone, train_backbone, num_channels, return_interm_layers)


class GroupNorm32(torch.nn.GroupNorm):
    def __init__(self, num_channels, num_groups=32, **kargs):
        super().__init__(num_groups, num_channels, **kargs)


class GroupNormBackbone(BackboneBase):
    """ResNet backbone with GroupNorm with 32 channels."""

    def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
        name_map = {
            "resnet50-gn": ("resnet50", "/checkpoint/szagoruyko/imagenet/22014122/checkpoint.pth"),
            "resnet101-gn": ("resnet101", "/checkpoint/szagoruyko/imagenet/22080524/checkpoint.pth"),
        }
        backbone = getattr(torchvision.models, name_map[name][0])(
            replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=GroupNorm32
        )
        checkpoint = torch.load(name_map[name][1], map_location="cpu")
        state_dict = {k[7:]: p for k, p in checkpoint["model"].items()}
        backbone.load_state_dict(state_dict)
        num_channels = 512 if name_map[name][0] in ("resnet18", "resnet34") else 2048
        super().__init__(backbone, train_backbone, num_channels, return_interm_layers)


def replace_bn(m, name=""):
    for attr_str in dir(m):
        target_attr = getattr(m, attr_str)
        if isinstance(target_attr, torch.nn.BatchNorm2d):
            frozen = FrozenBatchNorm2d(target_attr.num_features)
            bn = getattr(m, attr_str)
            frozen.weight.data.copy_(bn.weight)
            frozen.bias.data.copy_(bn.bias)
            frozen.running_mean.data.copy_(bn.running_mean)
            frozen.running_var.data.copy_(bn.running_var)
            setattr(m, attr_str, frozen)
    for n, ch in m.named_children():
        replace_bn(ch, n)


class GN_8(nn.Module):
    def __init__(self, num_channels):
        super().__init__()
        self.gn = torch.nn.GroupNorm(8, num_channels)

    def forward(self, x):
        return self.gn(x)


class TimmBackbone(nn.Module):
    def __init__(self, name, return_interm_layers, main_layer=-1, group_norm=False):
        super().__init__()
        backbone = create_model(name, pretrained=True, in_chans=3, features_only=True, out_indices=(1, 2, 3, 4))

        with torch.no_grad():
            replace_bn(backbone)
        num_channels = backbone.feature_info.channels()[-1]
        self.body = backbone
        self.num_channels =  num_channels
        self.interm = return_interm_layers
        self.main_layer = main_layer

    def forward(self, tensor_list):
        xs = self.body(tensor_list.tensors)
        if not self.interm:
            xs = [xs[self.main_layer]]
        out = OrderedDict()
        for i, x in enumerate(xs):
            mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0]
            out[f"layer{i}"] = NestedTensor(x, mask)
        return out