sdpipe_webui / app.py
1lint
refactor code and fix cpu support
919fef8
raw
history blame
7.08 kB
import gradio as gr
from multiprocessing import cpu_count
from utils.functions import generate, train_textual_inversion
from utils.shared import model_ids, scheduler_names, default_scheduler
default_img_size = 512
with open("html/header.html") as fp:
header = fp.read()
with open("html/footer.html") as fp:
footer = fp.read()
with gr.Blocks(css="html/style.css") as demo:
pipe_state = gr.State(lambda: 1)
gr.HTML(header)
with gr.Row():
with gr.Column(scale=70):
# with gr.Row():
prompt = gr.Textbox(
label="Prompt", placeholder="<Shift+Enter> to generate", lines=2
)
neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="", lines=2)
with gr.Column(scale=30):
model_name = gr.Dropdown(
label="Model", choices=model_ids, value=model_ids[0]
)
scheduler_name = gr.Dropdown(
label="Scheduler", choices=scheduler_names, value=default_scheduler
)
generate_button = gr.Button(value="Generate", elem_id="generate-button")
with gr.Row():
with gr.Column():
with gr.Tab("Text to Image") as tab:
tab.select(lambda: 1, [], pipe_state)
with gr.Tab("Image to image") as tab:
tab.select(lambda: 2, [], pipe_state)
image = gr.Image(
label="Image to Image",
source="upload",
tool="editor",
type="pil",
elem_id="image_upload",
).style(height=default_img_size)
strength = gr.Slider(
label="Denoising strength",
minimum=0,
maximum=1,
step=0.02,
value=0.8,
)
with gr.Tab("Inpainting") as tab:
tab.select(lambda: 3, [], pipe_state)
inpaint_image = gr.Image(
label="Inpainting",
source="upload",
tool="sketch",
type="pil",
elem_id="image_upload",
).style(height=default_img_size)
inpaint_strength = gr.Slider(
label="Denoising strength",
minimum=0,
maximum=1,
step=0.02,
value=0.8,
)
inpaint_options = [
"preserve non-masked portions of image",
"output entire inpainted image",
]
inpaint_radio = gr.Radio(
inpaint_options,
value=inpaint_options[0],
show_label=False,
interactive=True,
)
with gr.Tab("Textual Inversion") as tab:
tab.select(lambda: 4, [], pipe_state)
type_of_thing = gr.Dropdown(
label="What would you like to train?",
choices=["object", "person", "style"],
value="object",
interactive=True,
)
text_train_bsz = gr.Slider(
label="Training Batch Size",
minimum=1,
maximum=8,
step=1,
value=1,
)
files = gr.File(
label=f"""Upload the images for your concept""",
file_count="multiple",
interactive=True,
visible=True,
)
text_train_steps = gr.Number(label="How many steps", value=1000)
text_learning_rate = gr.Number(label="Learning Rate", value=5.0e-4)
concept_word = gr.Textbox(
label=f"""concept word - use a unique, made up word to avoid collisions"""
)
init_word = gr.Textbox(
label=f"""initial word - to init the concept embedding"""
)
textual_inversion_button = gr.Button(value="Train Textual Inversion")
training_status = gr.Text(label="Training Status")
with gr.Row():
batch_size = gr.Slider(
label="Batch Size", value=1, minimum=1, maximum=8, step=1
)
seed = gr.Slider(-1, 2147483647, label="Seed", value=-1, step=1)
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, minimum=0, maximum=20
)
steps = gr.Slider(
label="Steps", value=20, minimum=1, maximum=100, step=1
)
with gr.Row():
width = gr.Slider(
label="Width",
value=default_img_size,
minimum=64,
maximum=1024,
step=32,
)
height = gr.Slider(
label="Height",
value=default_img_size,
minimum=64,
maximum=1024,
step=32,
)
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(height=default_img_size, grid=2)
generation_details = gr.Markdown()
pipe_kwargs = gr.Textbox(label="Pipe kwargs", value="{\n\t\n}")
# if torch.cuda.is_available():
# giga = 2**30
# vram_guage = gr.Slider(0, torch.cuda.memory_reserved(0)/giga, label='VRAM Allocated to Reserved (GB)', value=0, step=1)
# demo.load(lambda : torch.cuda.memory_allocated(0)/giga, inputs=[], outputs=vram_guage, every=0.5, show_progress=False)
gr.HTML(footer)
inputs = [
model_name,
scheduler_name,
prompt,
guidance,
steps,
batch_size,
width,
height,
seed,
image,
strength,
inpaint_image,
inpaint_strength,
inpaint_radio,
neg_prompt,
pipe_state,
pipe_kwargs,
]
outputs = [gallery, generation_details]
prompt.submit(generate, inputs=inputs, outputs=outputs)
generate_button.click(generate, inputs=inputs, outputs=outputs)
textual_inversion_inputs = [
model_name,
scheduler_name,
type_of_thing,
files,
concept_word,
init_word,
text_train_steps,
text_train_bsz,
text_learning_rate,
]
textual_inversion_button.click(
train_textual_inversion,
inputs=textual_inversion_inputs,
outputs=[training_status],
)
# demo = gr.TabbedInterface([demo, dreambooth_tab], ["Main", "Dreambooth"])
demo.queue(concurrency_count=cpu_count())
demo.launch()