Spaces:
Runtime error
Runtime error
File size: 7,080 Bytes
a9103c4 919fef8 a9103c4 919fef8 a9103c4 919fef8 a9103c4 919fef8 a9103c4 919fef8 a9103c4 919fef8 a9103c4 919fef8 a9103c4 919fef8 a9103c4 919fef8 a9103c4 919fef8 a9103c4 7833185 919fef8 7833185 919fef8 7833185 919fef8 7833185 919fef8 7833185 919fef8 7833185 a9103c4 f94c315 a9103c4 919fef8 a9103c4 919fef8 7833185 919fef8 7833185 919fef8 7833185 a9103c4 7833185 a9103c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
from multiprocessing import cpu_count
from utils.functions import generate, train_textual_inversion
from utils.shared import model_ids, scheduler_names, default_scheduler
default_img_size = 512
with open("html/header.html") as fp:
header = fp.read()
with open("html/footer.html") as fp:
footer = fp.read()
with gr.Blocks(css="html/style.css") as demo:
pipe_state = gr.State(lambda: 1)
gr.HTML(header)
with gr.Row():
with gr.Column(scale=70):
# with gr.Row():
prompt = gr.Textbox(
label="Prompt", placeholder="<Shift+Enter> to generate", lines=2
)
neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="", lines=2)
with gr.Column(scale=30):
model_name = gr.Dropdown(
label="Model", choices=model_ids, value=model_ids[0]
)
scheduler_name = gr.Dropdown(
label="Scheduler", choices=scheduler_names, value=default_scheduler
)
generate_button = gr.Button(value="Generate", elem_id="generate-button")
with gr.Row():
with gr.Column():
with gr.Tab("Text to Image") as tab:
tab.select(lambda: 1, [], pipe_state)
with gr.Tab("Image to image") as tab:
tab.select(lambda: 2, [], pipe_state)
image = gr.Image(
label="Image to Image",
source="upload",
tool="editor",
type="pil",
elem_id="image_upload",
).style(height=default_img_size)
strength = gr.Slider(
label="Denoising strength",
minimum=0,
maximum=1,
step=0.02,
value=0.8,
)
with gr.Tab("Inpainting") as tab:
tab.select(lambda: 3, [], pipe_state)
inpaint_image = gr.Image(
label="Inpainting",
source="upload",
tool="sketch",
type="pil",
elem_id="image_upload",
).style(height=default_img_size)
inpaint_strength = gr.Slider(
label="Denoising strength",
minimum=0,
maximum=1,
step=0.02,
value=0.8,
)
inpaint_options = [
"preserve non-masked portions of image",
"output entire inpainted image",
]
inpaint_radio = gr.Radio(
inpaint_options,
value=inpaint_options[0],
show_label=False,
interactive=True,
)
with gr.Tab("Textual Inversion") as tab:
tab.select(lambda: 4, [], pipe_state)
type_of_thing = gr.Dropdown(
label="What would you like to train?",
choices=["object", "person", "style"],
value="object",
interactive=True,
)
text_train_bsz = gr.Slider(
label="Training Batch Size",
minimum=1,
maximum=8,
step=1,
value=1,
)
files = gr.File(
label=f"""Upload the images for your concept""",
file_count="multiple",
interactive=True,
visible=True,
)
text_train_steps = gr.Number(label="How many steps", value=1000)
text_learning_rate = gr.Number(label="Learning Rate", value=5.0e-4)
concept_word = gr.Textbox(
label=f"""concept word - use a unique, made up word to avoid collisions"""
)
init_word = gr.Textbox(
label=f"""initial word - to init the concept embedding"""
)
textual_inversion_button = gr.Button(value="Train Textual Inversion")
training_status = gr.Text(label="Training Status")
with gr.Row():
batch_size = gr.Slider(
label="Batch Size", value=1, minimum=1, maximum=8, step=1
)
seed = gr.Slider(-1, 2147483647, label="Seed", value=-1, step=1)
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, minimum=0, maximum=20
)
steps = gr.Slider(
label="Steps", value=20, minimum=1, maximum=100, step=1
)
with gr.Row():
width = gr.Slider(
label="Width",
value=default_img_size,
minimum=64,
maximum=1024,
step=32,
)
height = gr.Slider(
label="Height",
value=default_img_size,
minimum=64,
maximum=1024,
step=32,
)
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(height=default_img_size, grid=2)
generation_details = gr.Markdown()
pipe_kwargs = gr.Textbox(label="Pipe kwargs", value="{\n\t\n}")
# if torch.cuda.is_available():
# giga = 2**30
# vram_guage = gr.Slider(0, torch.cuda.memory_reserved(0)/giga, label='VRAM Allocated to Reserved (GB)', value=0, step=1)
# demo.load(lambda : torch.cuda.memory_allocated(0)/giga, inputs=[], outputs=vram_guage, every=0.5, show_progress=False)
gr.HTML(footer)
inputs = [
model_name,
scheduler_name,
prompt,
guidance,
steps,
batch_size,
width,
height,
seed,
image,
strength,
inpaint_image,
inpaint_strength,
inpaint_radio,
neg_prompt,
pipe_state,
pipe_kwargs,
]
outputs = [gallery, generation_details]
prompt.submit(generate, inputs=inputs, outputs=outputs)
generate_button.click(generate, inputs=inputs, outputs=outputs)
textual_inversion_inputs = [
model_name,
scheduler_name,
type_of_thing,
files,
concept_word,
init_word,
text_train_steps,
text_train_bsz,
text_learning_rate,
]
textual_inversion_button.click(
train_textual_inversion,
inputs=textual_inversion_inputs,
outputs=[training_status],
)
# demo = gr.TabbedInterface([demo, dreambooth_tab], ["Main", "Dreambooth"])
demo.queue(concurrency_count=cpu_count())
demo.launch()
|