|
import gradio as gr |
|
import cv2 |
|
import requests |
|
import os |
|
import numpy as np |
|
|
|
from ultralytics import YOLO |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = YOLO('best.pt') |
|
path = [['1.jpeg'], ['2.jpeg']] |
|
video_path = [['contoh.mp4']] |
|
|
|
def show_preds_image(image_path): |
|
image = cv2.imread(image_path) |
|
outputs = model.predict(source=image_path) |
|
results = outputs[0].cpu().numpy() |
|
for i, det in enumerate(results.boxes.xyxy): |
|
cv2.rectangle( |
|
image, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=(0, 0, 255), |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
def show_preds_video(video_path): |
|
cap = cv2.VideoCapture(video_path) |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if ret: |
|
frame_copy = frame.copy() |
|
outputs = model.predict(source=frame) |
|
results = outputs[0].cpu().numpy() |
|
for i, det in enumerate(results.boxes.xyxy): |
|
cv2.rectangle( |
|
frame_copy, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=(0, 0, 255), |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) |
|
else: |
|
break |
|
|
|
def show_preds_webcam(frame): |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
outputs = model.predict(source=frame) |
|
results = outputs[0].cpu().numpy() |
|
for i, det in enumerate(results.boxes.xyxy): |
|
cv2.rectangle( |
|
frame, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=(0, 0, 255), |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
return frame |
|
|
|
inputs_image = gr.Image(label="Input Image") |
|
outputs_image = gr.Image(label="Output Image") |
|
interface_image = gr.Interface( |
|
fn=show_preds_image, |
|
inputs=inputs_image, |
|
outputs=outputs_image, |
|
title="Garbage Detection", |
|
examples=path, |
|
cache_examples=False, |
|
) |
|
|
|
inputs_video = gr.Video(label="Input Video") |
|
outputs_video = gr.Image(label="Output Image") |
|
interface_video = gr.Interface( |
|
fn=show_preds_video, |
|
inputs=inputs_video, |
|
outputs=outputs_video, |
|
title="Garbage Detection", |
|
examples=video_path, |
|
cache_examples=False, |
|
) |
|
|
|
inputs_webcam = gr.Image(sources="webcam", streaming=True) |
|
outputs_webcam = gr.Image(label="Output Image") |
|
interface_webcam = gr.Interface( |
|
fn=show_preds_webcam, |
|
inputs=inputs_webcam, |
|
outputs=outputs_webcam, |
|
title="Webcam Object Detection" |
|
) |
|
|
|
gr.TabbedInterface( |
|
[interface_image, interface_video, interface_webcam], |
|
tab_names=['Image Inference', 'Video Inference', 'Webcam Inference'] |
|
).queue().launch() |
|
|