File size: 3,520 Bytes
fa11d8c 89fbcb1 6da4103 89fbcb1 fa11d8c 458ae63 89fbcb1 458ae63 89fbcb1 458ae63 89fbcb1 7261123 6da4103 fa11d8c 7261123 fa11d8c 89fbcb1 7261123 fa11d8c 7261123 fa11d8c 6da4103 fa11d8c 6da4103 458ae63 6da4103 92ce739 6da4103 593e145 fa11d8c 89fbcb1 458ae63 89fbcb1 fa11d8c 593e145 6da4103 89fbcb1 6da4103 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import gradio as gr
import cv2
import requests
import os
import numpy as np
from ultralytics import YOLO
# file_urls = [
# 'https://www.dropbox.com/s/b5g97xo901zb3ds/Garbage_example.jpg?dl=1',
# 'https://www.dropbox.com/s/86uxlxxlm1iaexa/Garbage_screenshot.png?dl=1',
# 'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
# ]
# def download_file(url, save_name):
# if not os.path.exists(save_name):
# file = requests.get(url)
# open(save_name, 'wb').write(file.content)
# for i, url in enumerate(file_urls):
# if 'mp4' in file_urls[i]:
# download_file(
# file_urls[i],
# f"video.mp4"
# )
# else:
# download_file(
# file_urls[i],
# f"image_{i}.jpg"
# )
model = YOLO('best.pt')
path = [['1.jpeg'], ['2.jpeg']]
video_path = [['contoh.mp4']]
def show_preds_image(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
image,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def show_preds_video(video_path):
cap = cv2.VideoCapture(video_path)
while(cap.isOpened()):
ret, frame = cap.read()
if ret:
frame_copy = frame.copy()
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
frame_copy,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
else:
break
def show_preds_webcam(frame):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
frame,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
return frame
inputs_image = gr.Image(label="Input Image")
outputs_image = gr.Image(label="Output Image")
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Garbage Detection",
examples=path,
cache_examples=False,
)
inputs_video = gr.Video(label="Input Video")
outputs_video = gr.Image(label="Output Image")
interface_video = gr.Interface(
fn=show_preds_video,
inputs=inputs_video,
outputs=outputs_video,
title="Garbage Detection",
examples=video_path,
cache_examples=False,
)
inputs_webcam = gr.Image(sources="webcam", streaming=True)
outputs_webcam = gr.Image(label="Output Image")
interface_webcam = gr.Interface(
fn=show_preds_webcam,
inputs=inputs_webcam,
outputs=outputs_webcam,
title="Webcam Object Detection"
)
gr.TabbedInterface(
[interface_image, interface_video, interface_webcam],
tab_names=['Image Inference', 'Video Inference', 'Webcam Inference']
).queue().launch()
|