Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import sys | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoTokenizer, BitsAndBytesConfig | |
from model.segment_anything.utils.transforms import ResizeLongestSide | |
def parse_args(args): | |
parser = argparse.ArgumentParser(description="EVF infer") | |
parser.add_argument("--version", required=True) | |
parser.add_argument("--vis_save_path", default="./infer", type=str) | |
parser.add_argument( | |
"--precision", | |
default="fp16", | |
type=str, | |
choices=["fp32", "bf16", "fp16"], | |
help="precision for inference", | |
) | |
parser.add_argument("--image_size", default=224, type=int, help="image size") | |
parser.add_argument("--model_max_length", default=512, type=int) | |
parser.add_argument("--local-rank", default=0, type=int, help="node rank") | |
parser.add_argument("--load_in_8bit", action="store_true", default=False) | |
parser.add_argument("--load_in_4bit", action="store_true", default=False) | |
parser.add_argument("--model_type", default="ori", choices=["ori", "effi"]) | |
parser.add_argument("--image_path", type=str, default="assets/zebra.jpg") | |
parser.add_argument("--prompt", type=str, default="zebra top left") | |
return parser.parse_args(args) | |
def sam_preprocess( | |
x: np.ndarray, | |
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1), | |
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1), | |
img_size=1024, | |
model_type="ori") -> torch.Tensor: | |
''' | |
preprocess of Segment Anything Model, including scaling, normalization and padding. | |
preprocess differs between SAM and Effi-SAM, where Effi-SAM use no padding. | |
input: ndarray | |
output: torch.Tensor | |
''' | |
assert img_size==1024, \ | |
"both SAM and Effi-SAM receive images of size 1024^2, don't change this setting unless you're sure that your employed model works well with another size." | |
x = ResizeLongestSide(img_size).apply_image(x) | |
resize_shape = x.shape[:2] | |
x = torch.from_numpy(x).permute(2,0,1).contiguous() | |
# Normalize colors | |
x = (x - pixel_mean) / pixel_std | |
if model_type=="effi": | |
x = F.interpolate(x.unsqueeze(0), (img_size, img_size), mode="bilinear").squeeze(0) | |
else: | |
# Pad | |
h, w = x.shape[-2:] | |
padh = img_size - h | |
padw = img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
return x, resize_shape | |
def beit3_preprocess(x: np.ndarray, img_size=224) -> torch.Tensor: | |
''' | |
preprocess for BEIT-3 model. | |
input: ndarray | |
output: torch.Tensor | |
''' | |
beit_preprocess = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((img_size, img_size), interpolation=InterpolationMode.BICUBIC), | |
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) | |
]) | |
return beit_preprocess(x) | |
def init_models(args): | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.version, | |
padding_side="right", | |
use_fast=False, | |
) | |
torch_dtype = torch.float32 | |
if args.precision == "bf16": | |
torch_dtype = torch.bfloat16 | |
elif args.precision == "fp16": | |
torch_dtype = torch.half | |
kwargs = {"torch_dtype": torch_dtype} | |
if args.load_in_4bit: | |
kwargs.update( | |
{ | |
"torch_dtype": torch.half, | |
"quantization_config": BitsAndBytesConfig( | |
llm_int8_skip_modules=["visual_model"], | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
), | |
} | |
) | |
elif args.load_in_8bit: | |
kwargs.update( | |
{ | |
"torch_dtype": torch.half, | |
"quantization_config": BitsAndBytesConfig( | |
llm_int8_skip_modules=["visual_model"], | |
load_in_8bit=True, | |
), | |
} | |
) | |
if args.model_type=="ori": | |
from model.evf_sam import EvfSamModel | |
model = EvfSamModel.from_pretrained( | |
args.version, low_cpu_mem_usage=True, **kwargs | |
) | |
elif args.model_type=="effi": | |
from model.evf_effisam import EvfEffiSamModel | |
model = EvfEffiSamModel.from_pretrained( | |
args.version, low_cpu_mem_usage=True, **kwargs | |
) | |
if (not args.load_in_4bit) and (not args.load_in_8bit): | |
model = model.cuda() | |
model.eval() | |
return tokenizer, model | |
def main(args): | |
args = parse_args(args) | |
# clarify IO | |
image_path = args.image_path | |
if not os.path.exists(image_path): | |
print("File not found in {}".format(image_path)) | |
exit() | |
prompt = args.prompt | |
os.makedirs(args.vis_save_path, exist_ok=True) | |
save_path = "{}/{}_vis.png".format( | |
args.vis_save_path, os.path.basename(image_path).split(".")[0] | |
) | |
# initialize model and tokenizer | |
tokenizer, model = init_models(args) | |
# preprocess | |
image_np = cv2.imread(image_path) | |
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) | |
original_size_list = [image_np.shape[:2]] | |
image_beit = beit3_preprocess(image_np, args.image_size).to(dtype=model.dtype, device=model.device) | |
image_sam, resize_shape = sam_preprocess(image_np, model_type=args.model_type) | |
image_sam = image_sam.to(dtype=model.dtype, device=model.device) | |
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(device=model.device) | |
# infer | |
pred_mask = model.inference( | |
image_sam.unsqueeze(0), | |
image_beit.unsqueeze(0), | |
input_ids, | |
resize_list=[resize_shape], | |
original_size_list=original_size_list, | |
) | |
pred_mask = pred_mask.detach().cpu().numpy()[0] | |
pred_mask = pred_mask > 0 | |
# save visualization | |
save_img = image_np.copy() | |
save_img[pred_mask] = ( | |
image_np * 0.5 | |
+ pred_mask[:, :, None].astype(np.uint8) * np.array([50, 120, 220]) * 0.5 | |
)[pred_mask] | |
save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR) | |
cv2.imwrite(save_path, save_img) | |
if __name__ == "__main__": | |
main(sys.argv[1:]) |