Spaces:
Runtime error
Runtime error
File size: 6,292 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import argparse
import os
import sys
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoTokenizer, BitsAndBytesConfig
from model.segment_anything.utils.transforms import ResizeLongestSide
def parse_args(args):
parser = argparse.ArgumentParser(description="EVF infer")
parser.add_argument("--version", required=True)
parser.add_argument("--vis_save_path", default="./infer", type=str)
parser.add_argument(
"--precision",
default="fp16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--image_size", default=224, type=int, help="image size")
parser.add_argument("--model_max_length", default=512, type=int)
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=False)
parser.add_argument("--model_type", default="ori", choices=["ori", "effi"])
parser.add_argument("--image_path", type=str, default="assets/zebra.jpg")
parser.add_argument("--prompt", type=str, default="zebra top left")
return parser.parse_args(args)
def sam_preprocess(
x: np.ndarray,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
model_type="ori") -> torch.Tensor:
'''
preprocess of Segment Anything Model, including scaling, normalization and padding.
preprocess differs between SAM and Effi-SAM, where Effi-SAM use no padding.
input: ndarray
output: torch.Tensor
'''
assert img_size==1024, \
"both SAM and Effi-SAM receive images of size 1024^2, don't change this setting unless you're sure that your employed model works well with another size."
x = ResizeLongestSide(img_size).apply_image(x)
resize_shape = x.shape[:2]
x = torch.from_numpy(x).permute(2,0,1).contiguous()
# Normalize colors
x = (x - pixel_mean) / pixel_std
if model_type=="effi":
x = F.interpolate(x.unsqueeze(0), (img_size, img_size), mode="bilinear").squeeze(0)
else:
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x, resize_shape
def beit3_preprocess(x: np.ndarray, img_size=224) -> torch.Tensor:
'''
preprocess for BEIT-3 model.
input: ndarray
output: torch.Tensor
'''
beit_preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((img_size, img_size), interpolation=InterpolationMode.BICUBIC),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
return beit_preprocess(x)
def init_models(args):
tokenizer = AutoTokenizer.from_pretrained(
args.version,
padding_side="right",
use_fast=False,
)
torch_dtype = torch.float32
if args.precision == "bf16":
torch_dtype = torch.bfloat16
elif args.precision == "fp16":
torch_dtype = torch.half
kwargs = {"torch_dtype": torch_dtype}
if args.load_in_4bit:
kwargs.update(
{
"torch_dtype": torch.half,
"quantization_config": BitsAndBytesConfig(
llm_int8_skip_modules=["visual_model"],
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
),
}
)
elif args.load_in_8bit:
kwargs.update(
{
"torch_dtype": torch.half,
"quantization_config": BitsAndBytesConfig(
llm_int8_skip_modules=["visual_model"],
load_in_8bit=True,
),
}
)
if args.model_type=="ori":
from model.evf_sam import EvfSamModel
model = EvfSamModel.from_pretrained(
args.version, low_cpu_mem_usage=True, **kwargs
)
elif args.model_type=="effi":
from model.evf_effisam import EvfEffiSamModel
model = EvfEffiSamModel.from_pretrained(
args.version, low_cpu_mem_usage=True, **kwargs
)
if (not args.load_in_4bit) and (not args.load_in_8bit):
model = model.cuda()
model.eval()
return tokenizer, model
def main(args):
args = parse_args(args)
# clarify IO
image_path = args.image_path
if not os.path.exists(image_path):
print("File not found in {}".format(image_path))
exit()
prompt = args.prompt
os.makedirs(args.vis_save_path, exist_ok=True)
save_path = "{}/{}_vis.png".format(
args.vis_save_path, os.path.basename(image_path).split(".")[0]
)
# initialize model and tokenizer
tokenizer, model = init_models(args)
# preprocess
image_np = cv2.imread(image_path)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
original_size_list = [image_np.shape[:2]]
image_beit = beit3_preprocess(image_np, args.image_size).to(dtype=model.dtype, device=model.device)
image_sam, resize_shape = sam_preprocess(image_np, model_type=args.model_type)
image_sam = image_sam.to(dtype=model.dtype, device=model.device)
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(device=model.device)
# infer
pred_mask = model.inference(
image_sam.unsqueeze(0),
image_beit.unsqueeze(0),
input_ids,
resize_list=[resize_shape],
original_size_list=original_size_list,
)
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask = pred_mask > 0
# save visualization
save_img = image_np.copy()
save_img[pred_mask] = (
image_np * 0.5
+ pred_mask[:, :, None].astype(np.uint8) * np.array([50, 120, 220]) * 0.5
)[pred_mask]
save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
cv2.imwrite(save_path, save_img)
if __name__ == "__main__":
main(sys.argv[1:]) |