Spaces:
Runtime error
Runtime error
import contextlib | |
import copy | |
import io | |
import logging | |
import os | |
import random | |
import numpy as np | |
import pycocotools.mask as mask_util | |
from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes | |
from detectron2.utils.file_io import PathManager | |
from fvcore.common.timer import Timer | |
from PIL import Image | |
""" | |
This file contains functions to parse RefCOCO-format annotations into dicts in "Detectron2 format". | |
""" | |
logger = logging.getLogger(__name__) | |
__all__ = ["load_refcoco_json"] | |
def load_grefcoco_json( | |
refer_root, | |
dataset_name, | |
splitby, | |
split, | |
image_root, | |
extra_annotation_keys=None, | |
extra_refer_keys=None, | |
): | |
if dataset_name == "refcocop": | |
dataset_name = "refcoco+" | |
if dataset_name == "refcoco" or dataset_name == "refcoco+": | |
splitby == "unc" | |
if dataset_name == "refcocog": | |
assert splitby == "umd" or splitby == "google" | |
dataset_id = "_".join([dataset_name, splitby, split]) | |
from .grefer import G_REFER | |
logger.info("Loading dataset {} ({}-{}) ...".format(dataset_name, splitby, split)) | |
logger.info("Refcoco root: {}".format(refer_root)) | |
timer = Timer() | |
refer_root = PathManager.get_local_path(refer_root) | |
with contextlib.redirect_stdout(io.StringIO()): | |
refer_api = G_REFER(data_root=refer_root, dataset=dataset_name, splitBy=splitby) | |
if timer.seconds() > 1: | |
logger.info( | |
"Loading {} takes {:.2f} seconds.".format(dataset_id, timer.seconds()) | |
) | |
ref_ids = refer_api.getRefIds(split=split) | |
img_ids = refer_api.getImgIds(ref_ids) | |
refs = refer_api.loadRefs(ref_ids) | |
imgs = [refer_api.loadImgs(ref["image_id"])[0] for ref in refs] | |
anns = [refer_api.loadAnns(ref["ann_id"]) for ref in refs] | |
imgs_refs_anns = list(zip(imgs, refs, anns)) | |
logger.info( | |
"Loaded {} images, {} referring object sets in G_RefCOCO format from {}".format( | |
len(img_ids), len(ref_ids), dataset_id | |
) | |
) | |
dataset_dicts = [] | |
ann_keys = ["iscrowd", "bbox", "category_id"] + (extra_annotation_keys or []) | |
ref_keys = ["raw", "sent_id"] + (extra_refer_keys or []) | |
ann_lib = {} | |
NT_count = 0 | |
MT_count = 0 | |
for img_dict, ref_dict, anno_dicts in imgs_refs_anns: | |
record = {} | |
record["source"] = "grefcoco" | |
record["file_name"] = os.path.join(image_root, img_dict["file_name"]) | |
record["height"] = img_dict["height"] | |
record["width"] = img_dict["width"] | |
image_id = record["image_id"] = img_dict["id"] | |
# Check that information of image, ann and ref match each other | |
# This fails only when the data parsing logic or the annotation file is buggy. | |
assert ref_dict["image_id"] == image_id | |
assert ref_dict["split"] == split | |
if not isinstance(ref_dict["ann_id"], list): | |
ref_dict["ann_id"] = [ref_dict["ann_id"]] | |
# No target samples | |
if None in anno_dicts: | |
assert anno_dicts == [None] | |
assert ref_dict["ann_id"] == [-1] | |
record["empty"] = True | |
obj = {key: None for key in ann_keys if key in ann_keys} | |
obj["bbox_mode"] = BoxMode.XYWH_ABS | |
obj["empty"] = True | |
obj = [obj] | |
# Multi target samples | |
else: | |
record["empty"] = False | |
obj = [] | |
for anno_dict in anno_dicts: | |
ann_id = anno_dict["id"] | |
if anno_dict["iscrowd"]: | |
continue | |
assert anno_dict["image_id"] == image_id | |
assert ann_id in ref_dict["ann_id"] | |
if ann_id in ann_lib: | |
ann = ann_lib[ann_id] | |
else: | |
ann = {key: anno_dict[key] for key in ann_keys if key in anno_dict} | |
ann["bbox_mode"] = BoxMode.XYWH_ABS | |
ann["empty"] = False | |
segm = anno_dict.get("segmentation", None) | |
assert segm # either list[list[float]] or dict(RLE) | |
if isinstance(segm, dict): | |
if isinstance(segm["counts"], list): | |
# convert to compressed RLE | |
segm = mask_util.frPyObjects(segm, *segm["size"]) | |
else: | |
# filter out invalid polygons (< 3 points) | |
segm = [ | |
poly | |
for poly in segm | |
if len(poly) % 2 == 0 and len(poly) >= 6 | |
] | |
if len(segm) == 0: | |
num_instances_without_valid_segmentation += 1 | |
continue # ignore this instance | |
ann["segmentation"] = segm | |
ann_lib[ann_id] = ann | |
obj.append(ann) | |
record["annotations"] = obj | |
# Process referring expressions | |
sents = ref_dict["sentences"] | |
for sent in sents: | |
ref_record = record.copy() | |
ref = {key: sent[key] for key in ref_keys if key in sent} | |
ref["ref_id"] = ref_dict["ref_id"] | |
ref_record["sentence"] = ref | |
dataset_dicts.append(ref_record) | |
# if ref_record['empty']: | |
# NT_count += 1 | |
# else: | |
# MT_count += 1 | |
# logger.info("NT samples: %d, MT samples: %d", NT_count, MT_count) | |
# Debug mode | |
# return dataset_dicts[:100] | |
return dataset_dicts | |
if __name__ == "__main__": | |
""" | |
Test the COCO json dataset loader. | |
Usage: | |
python -m detectron2.data.datasets.coco \ | |
path/to/json path/to/image_root dataset_name | |
"dataset_name" can be "coco_2014_minival_100", or other | |
pre-registered ones | |
""" | |
import sys | |
REFCOCO_PATH = "/mnt/lustre/hhding/code/ReLA/datasets" | |
COCO_TRAIN_2014_IMAGE_ROOT = "/mnt/lustre/hhding/code/ReLA/datasets/images" | |
REFCOCO_DATASET = "grefcoco" | |
REFCOCO_SPLITBY = "unc" | |
REFCOCO_SPLIT = "train" | |
dicts = load_grefcoco_json( | |
REFCOCO_PATH, | |
REFCOCO_DATASET, | |
REFCOCO_SPLITBY, | |
REFCOCO_SPLIT, | |
COCO_TRAIN_2014_IMAGE_ROOT, | |
) | |
print(1) | |