File size: 6,274 Bytes
a93afca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import contextlib
import copy
import io
import logging
import os
import random

import numpy as np
import pycocotools.mask as mask_util
from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager
from fvcore.common.timer import Timer
from PIL import Image

"""
This file contains functions to parse RefCOCO-format annotations into dicts in "Detectron2 format".
"""


logger = logging.getLogger(__name__)

__all__ = ["load_refcoco_json"]


def load_grefcoco_json(
    refer_root,
    dataset_name,
    splitby,
    split,
    image_root,
    extra_annotation_keys=None,
    extra_refer_keys=None,
):
    if dataset_name == "refcocop":
        dataset_name = "refcoco+"
    if dataset_name == "refcoco" or dataset_name == "refcoco+":
        splitby == "unc"
    if dataset_name == "refcocog":
        assert splitby == "umd" or splitby == "google"

    dataset_id = "_".join([dataset_name, splitby, split])

    from .grefer import G_REFER

    logger.info("Loading dataset {} ({}-{}) ...".format(dataset_name, splitby, split))
    logger.info("Refcoco root: {}".format(refer_root))
    timer = Timer()
    refer_root = PathManager.get_local_path(refer_root)
    with contextlib.redirect_stdout(io.StringIO()):
        refer_api = G_REFER(data_root=refer_root, dataset=dataset_name, splitBy=splitby)
    if timer.seconds() > 1:
        logger.info(
            "Loading {} takes {:.2f} seconds.".format(dataset_id, timer.seconds())
        )

    ref_ids = refer_api.getRefIds(split=split)
    img_ids = refer_api.getImgIds(ref_ids)
    refs = refer_api.loadRefs(ref_ids)
    imgs = [refer_api.loadImgs(ref["image_id"])[0] for ref in refs]
    anns = [refer_api.loadAnns(ref["ann_id"]) for ref in refs]
    imgs_refs_anns = list(zip(imgs, refs, anns))

    logger.info(
        "Loaded {} images, {} referring object sets in G_RefCOCO format from {}".format(
            len(img_ids), len(ref_ids), dataset_id
        )
    )

    dataset_dicts = []

    ann_keys = ["iscrowd", "bbox", "category_id"] + (extra_annotation_keys or [])
    ref_keys = ["raw", "sent_id"] + (extra_refer_keys or [])

    ann_lib = {}

    NT_count = 0
    MT_count = 0

    for img_dict, ref_dict, anno_dicts in imgs_refs_anns:
        record = {}
        record["source"] = "grefcoco"
        record["file_name"] = os.path.join(image_root, img_dict["file_name"])
        record["height"] = img_dict["height"]
        record["width"] = img_dict["width"]
        image_id = record["image_id"] = img_dict["id"]

        # Check that information of image, ann and ref match each other
        # This fails only when the data parsing logic or the annotation file is buggy.
        assert ref_dict["image_id"] == image_id
        assert ref_dict["split"] == split
        if not isinstance(ref_dict["ann_id"], list):
            ref_dict["ann_id"] = [ref_dict["ann_id"]]

        # No target samples
        if None in anno_dicts:
            assert anno_dicts == [None]
            assert ref_dict["ann_id"] == [-1]
            record["empty"] = True
            obj = {key: None for key in ann_keys if key in ann_keys}
            obj["bbox_mode"] = BoxMode.XYWH_ABS
            obj["empty"] = True
            obj = [obj]

        # Multi target samples
        else:
            record["empty"] = False
            obj = []
            for anno_dict in anno_dicts:
                ann_id = anno_dict["id"]
                if anno_dict["iscrowd"]:
                    continue
                assert anno_dict["image_id"] == image_id
                assert ann_id in ref_dict["ann_id"]

                if ann_id in ann_lib:
                    ann = ann_lib[ann_id]
                else:
                    ann = {key: anno_dict[key] for key in ann_keys if key in anno_dict}
                    ann["bbox_mode"] = BoxMode.XYWH_ABS
                    ann["empty"] = False

                    segm = anno_dict.get("segmentation", None)
                    assert segm  # either list[list[float]] or dict(RLE)
                    if isinstance(segm, dict):
                        if isinstance(segm["counts"], list):
                            # convert to compressed RLE
                            segm = mask_util.frPyObjects(segm, *segm["size"])
                    else:
                        # filter out invalid polygons (< 3 points)
                        segm = [
                            poly
                            for poly in segm
                            if len(poly) % 2 == 0 and len(poly) >= 6
                        ]
                        if len(segm) == 0:
                            num_instances_without_valid_segmentation += 1
                            continue  # ignore this instance
                    ann["segmentation"] = segm
                    ann_lib[ann_id] = ann

                obj.append(ann)

        record["annotations"] = obj

        # Process referring expressions
        sents = ref_dict["sentences"]
        for sent in sents:
            ref_record = record.copy()
            ref = {key: sent[key] for key in ref_keys if key in sent}
            ref["ref_id"] = ref_dict["ref_id"]
            ref_record["sentence"] = ref
            dataset_dicts.append(ref_record)
    #         if ref_record['empty']:
    #             NT_count += 1
    #         else:
    #             MT_count += 1

    # logger.info("NT samples: %d, MT samples: %d", NT_count, MT_count)

    # Debug mode
    # return dataset_dicts[:100]

    return dataset_dicts


if __name__ == "__main__":
    """
    Test the COCO json dataset loader.

    Usage:
        python -m detectron2.data.datasets.coco \
            path/to/json path/to/image_root dataset_name

        "dataset_name" can be "coco_2014_minival_100", or other
        pre-registered ones
    """
    import sys

    REFCOCO_PATH = "/mnt/lustre/hhding/code/ReLA/datasets"
    COCO_TRAIN_2014_IMAGE_ROOT = "/mnt/lustre/hhding/code/ReLA/datasets/images"
    REFCOCO_DATASET = "grefcoco"
    REFCOCO_SPLITBY = "unc"
    REFCOCO_SPLIT = "train"


    dicts = load_grefcoco_json(
        REFCOCO_PATH,
        REFCOCO_DATASET,
        REFCOCO_SPLITBY,
        REFCOCO_SPLIT,
        COCO_TRAIN_2014_IMAGE_ROOT,
    )
    print(1)