Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.llms import CTransformers | |
from langchain.prompts import PromptTemplate | |
from transformers import AutoModelForCausalLM | |
# from transformers import pipeline | |
# model = pipeline("text-generation", model="TheBloke/Llama-2-7B-Chat-GGML") | |
model = AutoModelForCausalLM.from_pretrained("llama-2-7b-chat.bin") | |
## Function to get response form the LLama2 Model | |
def getLLamaResponse(input_text, no_of_words, blog_style): | |
llm = CTransformers(model=model, | |
model_type='llama', | |
config={"max_new_tokens": 256, | |
'temperature': 0.01}) | |
template = """ | |
write a blog for {blog_style} job profile for a topic {input_text} | |
within {no_of_words} words. | |
""" | |
prompt = PromptTemplate(input_variables=["blog_style", "input_text", "no_of_words"], | |
template=template) | |
response = llm(prompt.format(blog_style=blog_style, input_text=input_text, no_of_words=no_of_words)) | |
st.write(response) | |
return response | |
st.set_page_config(page_title= "Generate Blogs", | |
page_icon="π€", | |
layout='centered', | |
initial_sidebar_state="collapsed") | |
st.header("Generate Blogs π€") | |
input_text = st.text_input("Enter the Blog Topic") | |
## creating two columns for additional two fields | |
col1, col2 = st.columns([5,5]) | |
with col1: | |
no_of_words = st.text_input("Enter the No. of words") | |
with col2: | |
blog_style = st.selectbox("writing the blog for", | |
('Researchers', 'Data Scientists', 'ML Engineers', 'Common People'), | |
index=0) | |
submit = st.button("Generate") | |
#final respponse | |
if submit: | |
st.write(getLLamaResponse(input_text, no_of_words, blog_style)) |