karthiksagarn's picture
Update app.py
99a828c verified
raw
history blame
1.82 kB
import streamlit as st
from langchain.llms import CTransformers
from langchain.prompts import PromptTemplate
from transformers import AutoModelForCausalLM
# from transformers import pipeline
# model = pipeline("text-generation", model="TheBloke/Llama-2-7B-Chat-GGML")
model = AutoModelForCausalLM.from_pretrained("llama-2-7b-chat.bin")
## Function to get response form the LLama2 Model
def getLLamaResponse(input_text, no_of_words, blog_style):
llm = CTransformers(model=model,
model_type='llama',
config={"max_new_tokens": 256,
'temperature': 0.01})
template = """
write a blog for {blog_style} job profile for a topic {input_text}
within {no_of_words} words.
"""
prompt = PromptTemplate(input_variables=["blog_style", "input_text", "no_of_words"],
template=template)
response = llm(prompt.format(blog_style=blog_style, input_text=input_text, no_of_words=no_of_words))
st.write(response)
return response
st.set_page_config(page_title= "Generate Blogs",
page_icon="πŸ€–",
layout='centered',
initial_sidebar_state="collapsed")
st.header("Generate Blogs πŸ€–")
input_text = st.text_input("Enter the Blog Topic")
## creating two columns for additional two fields
col1, col2 = st.columns([5,5])
with col1:
no_of_words = st.text_input("Enter the No. of words")
with col2:
blog_style = st.selectbox("writing the blog for",
('Researchers', 'Data Scientists', 'ML Engineers', 'Common People'),
index=0)
submit = st.button("Generate")
#final respponse
if submit:
st.write(getLLamaResponse(input_text, no_of_words, blog_style))