import streamlit as st from langchain.llms import CTransformers from langchain.prompts import PromptTemplate from transformers import AutoModelForCausalLM # from transformers import pipeline # model = pipeline("text-generation", model="TheBloke/Llama-2-7B-Chat-GGML") model = AutoModelForCausalLM.from_pretrained("llama-2-7b-chat.bin") ## Function to get response form the LLama2 Model def getLLamaResponse(input_text, no_of_words, blog_style): llm = CTransformers(model=model, model_type='llama', config={"max_new_tokens": 256, 'temperature': 0.01}) template = """ write a blog for {blog_style} job profile for a topic {input_text} within {no_of_words} words. """ prompt = PromptTemplate(input_variables=["blog_style", "input_text", "no_of_words"], template=template) response = llm(prompt.format(blog_style=blog_style, input_text=input_text, no_of_words=no_of_words)) st.write(response) return response st.set_page_config(page_title= "Generate Blogs", page_icon="🤖", layout='centered', initial_sidebar_state="collapsed") st.header("Generate Blogs 🤖") input_text = st.text_input("Enter the Blog Topic") ## creating two columns for additional two fields col1, col2 = st.columns([5,5]) with col1: no_of_words = st.text_input("Enter the No. of words") with col2: blog_style = st.selectbox("writing the blog for", ('Researchers', 'Data Scientists', 'ML Engineers', 'Common People'), index=0) submit = st.button("Generate") #final respponse if submit: st.write(getLLamaResponse(input_text, no_of_words, blog_style))