File size: 4,892 Bytes
3b6b22e 09d9587 6b31279 3b6b22e 6b31279 39b3b3e 6b31279 39b3b3e 6b31279 3b6b22e 39b3b3e 6b31279 09d9587 39b3b3e 6b31279 39b3b3e 6b31279 3b6b22e 7d7ed31 bd43296 7d7ed31 39b3b3e 3b6b22e 7d7ed31 39b3b3e 1b42ccf 39b3b3e 09d9587 3b6b22e 6b31279 500c811 6b31279 3b6b22e 500c811 6b31279 3b6b22e 991cd55 3b6b22e 6b31279 39b3b3e 3b6b22e 6b31279 39b3b3e 3b6b22e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
#!/usr/bin/env python3
#
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import os
import time
from datetime import datetime
import gradio as gr
import torchaudio
from model import get_pretrained_model, language_to_models, sample_rate
languages = sorted(language_to_models.keys())
def convert_to_wav(in_filename: str) -> str:
"""Convert the input audio file to a wave file"""
out_filename = in_filename + ".wav"
print(f"Converting '{in_filename}' to '{out_filename}'")
_ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' '{out_filename}'")
return out_filename
def process(in_filename: str, language: str, repo_id: str) -> str:
print("in_filename", in_filename)
print("language", language)
print("repo_id", repo_id)
filename = convert_to_wav(in_filename)
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
print(f"Started at {date_time}")
start = time.time()
wave, wave_sample_rate = torchaudio.load(filename)
if wave_sample_rate != sample_rate:
print(
f"Expected sample rate: {sample_rate}. Given: {wave_sample_rate}. "
f"Resampling to {sample_rate}."
)
wave = torchaudio.functional.resample(
wave,
orig_freq=wave_sample_rate,
new_freq=sample_rate,
)
wave = wave[0] # use only the first channel.
hyp = get_pretrained_model(repo_id).decode_waves([wave])[0]
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
end = time.time()
duration = wave.shape[0] / sample_rate
rtf = (end - start) / duration
print(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
print(f"Duration {duration: .3f} s")
print(f"RTF {rtf: .3f}")
print("hyp")
print(hyp)
return hyp
title = "# Automatic Speech Recognition with Next-gen Kaldi"
description = """
This space shows how to do automatic speech recognition with Next-gen Kaldi.
See more information by visiting the following links:
- <https://github.com/k2-fsa/icefall>
- <https://github.com/k2-fsa/sherpa>
- <https://github.com/k2-fsa/k2>
- <https://github.com/lhotse-speech/lhotse>
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown.update(choices=choices, value=choices[0])
raise ValueError(f"Unsupported language: {language}")
demo = gr.Blocks()
with demo:
gr.Markdown(title)
gr.Markdown(description)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
)
model_dropdown = gr.Dropdown(choices=[], label="Select a model")
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
with gr.Tabs():
with gr.TabItem("Upload from disk"):
uploaded_file = gr.inputs.Audio(
source="upload", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Upload from disk",
)
upload_button = gr.Button("Submit for recognition")
uploaded_output = gr.outputs.Textbox(
label="Recognized speech from uploaded file"
)
with gr.TabItem("Record from microphone"):
microphone = gr.inputs.Audio(
source="microphone", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Record from microphone",
)
recorded_output = gr.outputs.Textbox(
label="Recognized speech from recordings"
)
record_button = gr.Button("Submit for recognition")
upload_button.click(
process,
inputs=[uploaded_file, language_radio, model_dropdown],
outputs=uploaded_output,
)
record_button.click(
process,
inputs=[microphone, language_radio, model_dropdown],
outputs=recorded_output,
)
if __name__ == "__main__":
demo.launch()
|