csukuangfj
commited on
Commit
·
39b3b3e
1
Parent(s):
991cd55
small fixes
Browse files- app.py +27 -18
- model.py +159 -22
- offline_asr.py +5 -4
app.py
CHANGED
@@ -26,16 +26,9 @@ from datetime import datetime
|
|
26 |
import gradio as gr
|
27 |
import torchaudio
|
28 |
|
29 |
-
from model import
|
30 |
-
get_gigaspeech_pre_trained_model,
|
31 |
-
sample_rate,
|
32 |
-
get_wenetspeech_pre_trained_model,
|
33 |
-
)
|
34 |
|
35 |
-
|
36 |
-
"Chinese": get_wenetspeech_pre_trained_model(),
|
37 |
-
"English": get_gigaspeech_pre_trained_model(),
|
38 |
-
}
|
39 |
|
40 |
|
41 |
def convert_to_wav(in_filename: str) -> str:
|
@@ -46,12 +39,10 @@ def convert_to_wav(in_filename: str) -> str:
|
|
46 |
return out_filename
|
47 |
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
def process(in_filename: str, language: str) -> str:
|
53 |
print("in_filename", in_filename)
|
54 |
print("language", language)
|
|
|
55 |
filename = convert_to_wav(in_filename)
|
56 |
|
57 |
now = datetime.now()
|
@@ -74,7 +65,7 @@ def process(in_filename: str, language: str) -> str:
|
|
74 |
)
|
75 |
wave = wave[0] # use only the first channel.
|
76 |
|
77 |
-
hyp =
|
78 |
|
79 |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
80 |
end = time.time()
|
@@ -103,14 +94,32 @@ See more information by visiting the following links:
|
|
103 |
- <https://github.com/lhotse-speech/lhotse>
|
104 |
"""
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
with demo:
|
107 |
gr.Markdown(title)
|
108 |
gr.Markdown(description)
|
109 |
-
language_choices = list(
|
110 |
-
|
|
|
111 |
label="Language",
|
112 |
choices=language_choices,
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
with gr.Tabs():
|
116 |
with gr.TabItem("Upload from disk"):
|
@@ -140,12 +149,12 @@ with demo:
|
|
140 |
|
141 |
upload_button.click(
|
142 |
process,
|
143 |
-
inputs=[uploaded_file,
|
144 |
outputs=uploaded_output,
|
145 |
)
|
146 |
record_button.click(
|
147 |
process,
|
148 |
-
inputs=[microphone,
|
149 |
outputs=recorded_output,
|
150 |
)
|
151 |
|
|
|
26 |
import gradio as gr
|
27 |
import torchaudio
|
28 |
|
29 |
+
from model import get_pretrained_model, language_to_models, sample_rate
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
languages = sorted(language_to_models.keys())
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
def convert_to_wav(in_filename: str) -> str:
|
|
|
39 |
return out_filename
|
40 |
|
41 |
|
42 |
+
def process(in_filename: str, language: str, repo_id: str) -> str:
|
|
|
|
|
|
|
43 |
print("in_filename", in_filename)
|
44 |
print("language", language)
|
45 |
+
print("repo_id", repo_id)
|
46 |
filename = convert_to_wav(in_filename)
|
47 |
|
48 |
now = datetime.now()
|
|
|
65 |
)
|
66 |
wave = wave[0] # use only the first channel.
|
67 |
|
68 |
+
hyp = get_pretrained_model(repo_id).decode_waves([wave])[0]
|
69 |
|
70 |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
71 |
end = time.time()
|
|
|
94 |
- <https://github.com/lhotse-speech/lhotse>
|
95 |
"""
|
96 |
|
97 |
+
|
98 |
+
def update_model_dropdown(language: str):
|
99 |
+
if language in language_to_models:
|
100 |
+
choices = language_to_models[language]
|
101 |
+
return gr.Dropdown.update(choices=choices, value=choices[0])
|
102 |
+
|
103 |
+
raise ValueError(f"Unsupported language: {language}")
|
104 |
+
|
105 |
+
|
106 |
+
demo = gr.Blocks()
|
107 |
+
|
108 |
with demo:
|
109 |
gr.Markdown(title)
|
110 |
gr.Markdown(description)
|
111 |
+
language_choices = list(language_to_models.keys())
|
112 |
+
|
113 |
+
language_radio = gr.Radio(
|
114 |
label="Language",
|
115 |
choices=language_choices,
|
116 |
)
|
117 |
+
model_dropdown = gr.Dropdown(choices=[], label="Select a model")
|
118 |
+
language_radio.change(
|
119 |
+
update_model_dropdown,
|
120 |
+
inputs=language_radio,
|
121 |
+
outputs=model_dropdown,
|
122 |
+
)
|
123 |
|
124 |
with gr.Tabs():
|
125 |
with gr.TabItem("Upload from disk"):
|
|
|
149 |
|
150 |
upload_button.click(
|
151 |
process,
|
152 |
+
inputs=[uploaded_file, language_radio, model_dropdown],
|
153 |
outputs=uploaded_output,
|
154 |
)
|
155 |
record_button.click(
|
156 |
process,
|
157 |
+
inputs=[microphone, language_radio, model_dropdown],
|
158 |
outputs=recorded_output,
|
159 |
)
|
160 |
|
model.py
CHANGED
@@ -23,52 +23,189 @@ from offline_asr import OfflineAsr
|
|
23 |
sample_rate = 16000
|
24 |
|
25 |
|
26 |
-
@lru_cache(maxsize=
|
27 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
nn_model_filename = hf_hub_download(
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
subfolder="exp",
|
33 |
)
|
|
|
|
|
34 |
|
|
|
|
|
|
|
|
|
|
|
35 |
bpe_model_filename = hf_hub_download(
|
36 |
-
repo_id=
|
37 |
-
filename=
|
38 |
-
subfolder=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
|
|
40 |
|
41 |
return OfflineAsr(
|
42 |
nn_model_filename=nn_model_filename,
|
43 |
bpe_model_filename=bpe_model_filename,
|
44 |
token_filename=None,
|
45 |
-
decoding_method="greedy_search",
|
46 |
-
num_active_paths=4,
|
47 |
sample_rate=sample_rate,
|
48 |
device="cpu",
|
49 |
)
|
50 |
|
51 |
|
52 |
-
@lru_cache(maxsize=
|
53 |
-
def
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt",
|
57 |
-
subfolder="exp",
|
58 |
)
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
)
|
|
|
65 |
|
66 |
return OfflineAsr(
|
67 |
nn_model_filename=nn_model_filename,
|
68 |
bpe_model_filename=None,
|
69 |
token_filename=token_filename,
|
70 |
-
decoding_method="greedy_search",
|
71 |
-
num_active_paths=4,
|
72 |
sample_rate=sample_rate,
|
73 |
device="cpu",
|
74 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
sample_rate = 16000
|
24 |
|
25 |
|
26 |
+
@lru_cache(maxsize=30)
|
27 |
+
def get_pretrained_model(repo_id: str) -> OfflineAsr:
|
28 |
+
if repo_id in chinese_models:
|
29 |
+
return chinese_models[repo_id](repo_id)
|
30 |
+
elif repo_id in english_models:
|
31 |
+
return english_models[repo_id](repo_id)
|
32 |
+
elif repo_id in chinese_english_mixed_models:
|
33 |
+
chinese_english_mixed_models[repo_id](repo_id)
|
34 |
+
else:
|
35 |
+
raise ValueError(f"Unsupported repo_id: {repo_id}")
|
36 |
+
|
37 |
+
|
38 |
+
def _get_nn_model_filename(
|
39 |
+
repo_id: str,
|
40 |
+
filename: str,
|
41 |
+
subfolder: str = "exp",
|
42 |
+
) -> str:
|
43 |
nn_model_filename = hf_hub_download(
|
44 |
+
repo_id=repo_id,
|
45 |
+
filename=filename,
|
46 |
+
subfolder=subfolder,
|
|
|
47 |
)
|
48 |
+
return nn_model_filename
|
49 |
+
|
50 |
|
51 |
+
def _get_bpe_model_filename(
|
52 |
+
repo_id: str,
|
53 |
+
filename: str = "bpe.model",
|
54 |
+
subfolder: str = "data/lang_bpe_500",
|
55 |
+
) -> str:
|
56 |
bpe_model_filename = hf_hub_download(
|
57 |
+
repo_id=repo_id,
|
58 |
+
filename=filename,
|
59 |
+
subfolder=subfolder,
|
60 |
+
)
|
61 |
+
return bpe_model_filename
|
62 |
+
|
63 |
+
|
64 |
+
def _get_token_filename(
|
65 |
+
repo_id: str,
|
66 |
+
filename: str = "tokens.txt",
|
67 |
+
subfolder: str = "data/lang_char",
|
68 |
+
) -> str:
|
69 |
+
token_filename = hf_hub_download(
|
70 |
+
repo_id=repo_id,
|
71 |
+
filename=filename,
|
72 |
+
subfolder=subfolder,
|
73 |
+
)
|
74 |
+
return token_filename
|
75 |
+
|
76 |
+
|
77 |
+
@lru_cache(maxsize=10)
|
78 |
+
def _get_aishell2_pretrained_model(repo_id: str) -> OfflineAsr:
|
79 |
+
assert repo_id in [
|
80 |
+
# context-size 1
|
81 |
+
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa
|
82 |
+
# context-size 2
|
83 |
+
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa
|
84 |
+
]
|
85 |
+
|
86 |
+
nn_model_filename = _get_nn_model_filename(
|
87 |
+
repo_id=repo_id,
|
88 |
+
filename="cpu_jit.pt",
|
89 |
+
)
|
90 |
+
token_filename = _get_token_filename(repo_id=repo_id)
|
91 |
+
|
92 |
+
return OfflineAsr(
|
93 |
+
nn_model_filename=nn_model_filename,
|
94 |
+
bpe_model_filename=None,
|
95 |
+
token_filename=token_filename,
|
96 |
+
sample_rate=sample_rate,
|
97 |
+
device="cpu",
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
@lru_cache(maxsize=10)
|
102 |
+
def _get_gigaspeech_pre_trained_model(repo_id: str) -> OfflineAsr:
|
103 |
+
assert repo_id in [
|
104 |
+
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2",
|
105 |
+
]
|
106 |
+
|
107 |
+
nn_model_filename = _get_nn_model_filename(
|
108 |
+
# It is converted from https://huggingface.co/wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2 # noqa
|
109 |
+
repo_id="csukuangfj/icefall-asr-gigaspeech-pruned-transducer-stateless2", # noqa
|
110 |
+
filename="cpu_jit-epoch-29-avg-11-torch-1.10.0.pt",
|
111 |
)
|
112 |
+
bpe_model_filename = _get_bpe_model_filename(repo_id=repo_id)
|
113 |
|
114 |
return OfflineAsr(
|
115 |
nn_model_filename=nn_model_filename,
|
116 |
bpe_model_filename=bpe_model_filename,
|
117 |
token_filename=None,
|
|
|
|
|
118 |
sample_rate=sample_rate,
|
119 |
device="cpu",
|
120 |
)
|
121 |
|
122 |
|
123 |
+
@lru_cache(maxsize=10)
|
124 |
+
def _get_librispeech_pre_trained_model(repo_id: str) -> OfflineAsr:
|
125 |
+
assert repo_id in [
|
126 |
+
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa
|
127 |
+
]
|
128 |
+
|
129 |
+
nn_model_filename = _get_nn_model_filename(
|
130 |
+
repo_id=repo_id,
|
131 |
+
filename="cpu_jit.pt",
|
132 |
+
)
|
133 |
+
bpe_model_filename = _get_bpe_model_filename(repo_id=repo_id)
|
134 |
+
|
135 |
+
return OfflineAsr(
|
136 |
+
nn_model_filename=nn_model_filename,
|
137 |
+
bpe_model_filename=bpe_model_filename,
|
138 |
+
token_filename=None,
|
139 |
+
sample_rate=sample_rate,
|
140 |
+
device="cpu",
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
@lru_cache(maxsize=10)
|
145 |
+
def _get_wenetspeech_pre_trained_model(repo_id: str):
|
146 |
+
assert repo_id in [
|
147 |
+
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2",
|
148 |
+
]
|
149 |
+
|
150 |
+
nn_model_filename = _get_nn_model_filename(
|
151 |
+
repo_id=repo_id,
|
152 |
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt",
|
|
|
153 |
)
|
154 |
+
token_filename = _get_token_filename(repo_id=repo_id)
|
155 |
|
156 |
+
return OfflineAsr(
|
157 |
+
nn_model_filename=nn_model_filename,
|
158 |
+
bpe_model_filename=None,
|
159 |
+
token_filename=token_filename,
|
160 |
+
sample_rate=sample_rate,
|
161 |
+
device="cpu",
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
@lru_cache(maxsize=10)
|
166 |
+
def _get_tal_csasr_pre_trained_model(repo_id: str):
|
167 |
+
assert repo_id in [
|
168 |
+
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5",
|
169 |
+
]
|
170 |
+
|
171 |
+
nn_model_filename = _get_nn_model_filename(
|
172 |
+
repo_id=repo_id,
|
173 |
+
filename="cpu_jit.pt",
|
174 |
)
|
175 |
+
token_filename = _get_token_filename(repo_id=repo_id)
|
176 |
|
177 |
return OfflineAsr(
|
178 |
nn_model_filename=nn_model_filename,
|
179 |
bpe_model_filename=None,
|
180 |
token_filename=token_filename,
|
|
|
|
|
181 |
sample_rate=sample_rate,
|
182 |
device="cpu",
|
183 |
)
|
184 |
+
|
185 |
+
|
186 |
+
chinese_models = {
|
187 |
+
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, # noqa
|
188 |
+
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, # noqa
|
189 |
+
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa
|
190 |
+
}
|
191 |
+
|
192 |
+
english_models = {
|
193 |
+
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, # noqa
|
194 |
+
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_librispeech_pre_trained_model, # noqa
|
195 |
+
}
|
196 |
+
|
197 |
+
chinese_english_mixed_models = {
|
198 |
+
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_tal_csasr_pre_trained_model, # noqa
|
199 |
+
}
|
200 |
+
|
201 |
+
all_models = {
|
202 |
+
**chinese_models,
|
203 |
+
**english_models,
|
204 |
+
**chinese_english_mixed_models,
|
205 |
+
}
|
206 |
+
|
207 |
+
language_to_models = {
|
208 |
+
"Chinese": sorted(chinese_models.keys()),
|
209 |
+
"English": sorted(english_models.keys()),
|
210 |
+
"Chinese+English": sorted(chinese_english_mixed_models.keys()),
|
211 |
+
}
|
offline_asr.py
CHANGED
@@ -206,10 +206,10 @@ class OfflineAsr(object):
|
|
206 |
def __init__(
|
207 |
self,
|
208 |
nn_model_filename: str,
|
209 |
-
bpe_model_filename: Optional[str],
|
210 |
-
token_filename: Optional[str],
|
211 |
-
decoding_method: str,
|
212 |
-
num_active_paths: int,
|
213 |
sample_rate: int = 16000,
|
214 |
device: Union[str, torch.device] = "cpu",
|
215 |
):
|
@@ -246,6 +246,7 @@ class OfflineAsr(object):
|
|
246 |
self.sp = spm.SentencePieceProcessor()
|
247 |
self.sp.load(bpe_model_filename)
|
248 |
else:
|
|
|
249 |
self.token_table = k2.SymbolTable.from_file(token_filename)
|
250 |
|
251 |
self.feature_extractor = self._build_feature_extractor(
|
|
|
206 |
def __init__(
|
207 |
self,
|
208 |
nn_model_filename: str,
|
209 |
+
bpe_model_filename: Optional[str] = None,
|
210 |
+
token_filename: Optional[str] = None,
|
211 |
+
decoding_method: str = "greedy_search",
|
212 |
+
num_active_paths: int = 4,
|
213 |
sample_rate: int = 16000,
|
214 |
device: Union[str, torch.device] = "cpu",
|
215 |
):
|
|
|
246 |
self.sp = spm.SentencePieceProcessor()
|
247 |
self.sp.load(bpe_model_filename)
|
248 |
else:
|
249 |
+
assert token_filename is not None, token_filename
|
250 |
self.token_table = k2.SymbolTable.from_file(token_filename)
|
251 |
|
252 |
self.feature_extractor = self._build_feature_extractor(
|