Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import HfApi | |
from collections import defaultdict | |
# ------------------------------------------------------ | |
# Get spaces with more details | |
api = HfApi() | |
spaces = api.list_spaces(limit=40000) # Limiting to 40000 for now | |
# Create a DataFrame | |
data = [] | |
for space in spaces: | |
data.append({ | |
'id': space.id, | |
'title': space.id.split('/')[-1], | |
'author': space.author if space.author else space.id.split('/')[0], | |
'likes': space.likes, | |
'tags': space.tags if hasattr(space, 'tags') else [], | |
}) | |
df = pd.DataFrame(data) | |
print("Total spaces collected:", len(df)) | |
print("\nSample of the data:") | |
print(df.head()) | |
# ------------------------------------------------------ | |
# Define categories and their keywords | |
categories = { | |
'Text-to-Speech': ['tts', 'speech', 'voice', 'audio', 'kokoro'], | |
'Transcription': ['transcribe', 'transcription'], | |
'Agents': ['agent', 'agents', 'smol', 'multi-step', 'autobot', 'autoGPT' 'agentic'], | |
'Image Generation': ['stable-diffusion', 'diffusion', 'gan', 'image', 'img2img', 'style', 'art'], | |
'Video': ['video', 'animation', 'motion', 'sora'], | |
'Face/Portrait': ['face', 'portrait', 'gaze', 'facial'], | |
'Chat/LLM': ['chat', 'llm', 'gpt', 'llama', 'text', 'language'], | |
'3D': ['3d', 'mesh', 'point-cloud', 'depth'], | |
'Audio': ['audio', 'music', 'sound', 'voice'], | |
'Vision': ['vision', 'detection', 'recognition', 'classifier'], | |
'CLIP': ['image-to-text', 'describe-image'], | |
'Games': ['game', 'games', 'play', 'playground'], | |
'Finance': ['finance', 'stock', 'money', 'currency', 'bank', 'market'], | |
'SAM': ['sam', 'segmentation', 'mask'], | |
'Science': ['science', 'physics', 'chemistry', 'biology', 'math', 'astronomy', 'geology', 'meteorology', 'engineering', 'medicine', 'health', 'nutrition', 'environment', 'ecology', 'geography', 'geology', 'geophysics'], | |
'Education': ['education', 'school', 'university', 'college', 'teaching', 'learning', 'study', 'research'], | |
'Graph': ['graph', 'network', 'node', 'edge', 'path', 'tree', 'cycle', 'flow', 'matching', 'coloring', 'swarm'], | |
'Research': ['research', 'study', 'experiment', 'paper', 'discovery', 'innovation', 'exploration', 'analysis'], | |
'Document Analyis': ['pdf', 'RAG', 'idefecs'], | |
'WebGPU': ['localModel', 'webGPU'], | |
'Point Tracking': ['CoTracker', 'tapir', 'tapnet', 'point', 'track'], | |
'Games': ['game', 'Unity', 'UE5', 'Unreal'], | |
'Leaderboard': ['arena', 'leaderboard', 'timeline'], | |
'Other': [] # Default category | |
} | |
def categorize_space(title, tags): | |
title_lower = title.lower() | |
# Convert tags to lowercase if tags exist | |
tags_lower = [t.lower() for t in tags] if tags else [] | |
for category, keywords in categories.items(): | |
# Check both title and tags for keywords | |
if any(keyword in title_lower for keyword in keywords) or \ | |
any(keyword in tag for keyword in keywords for tag in tags_lower): | |
return category | |
return 'Other' | |
# Add category to DataFrame | |
df['category'] = df.apply(lambda x: categorize_space(x['title'], x['tags']), axis=1) | |
# Show category distribution | |
category_counts = df['category'].value_counts() | |
print("\nCategory Distribution:") | |
print(category_counts) | |
# Show sample spaces from each category | |
print("\nSample spaces from each category:") | |
for category in categories.keys(): | |
print(f"\n{category}:") | |
sample = df[df['category'] == category].head(3) | |
print(sample[['title', 'likes']].to_string()) | |
# ------------------------------------------------------ | |
# Add total likes per category | |
category_likes = df.groupby('category')['likes'].sum().sort_values(ascending=False) | |
print("Total likes per category:") | |
print(category_likes) | |
print("\nTop 10 spaces in each category (sorted by likes):") | |
for category in categories.keys(): | |
print(f"\n=== {category} ===") | |
top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes']] | |
# Format output with padding for better readability | |
print(top_10.to_string(index=False)) | |
# ------------------------------------------------------ | |
# Add space URLs | |
df['url'] = 'https://huggingface.co./spaces/' + df['id'] | |
# Let's show the top 5 spaces from each category with their links | |
print("Top 5 spaces in each category with links:") | |
for category in categories.keys(): | |
print(f"\n=== {category} ===") | |
top_5 = df[df['category'] == category].nlargest(5, 'likes')[['title', 'likes', 'url']] | |
# Format output with padding for better readability | |
print(top_5.to_string(index=False)) | |
# ------------------------------------------------------ | |
def search_spaces(search_text, category): | |
if category == "All Categories": | |
spaces_df = df | |
else: | |
spaces_df = df[df['category'] == category] | |
if search_text: | |
spaces_df = spaces_df[spaces_df['title'].str.lower().str.contains(search_text.lower())] | |
spaces = spaces_df.nlargest(20, 'likes')[['title', 'likes', 'url', 'category']] | |
# Get category stats | |
total_spaces = len(spaces_df) | |
total_likes = spaces_df['likes'].sum() | |
# Format the results as HTML with clickable links and stats | |
html_content = f""" | |
<div style='margin-bottom: 20px; padding: 10px; background-color: #f5f5f5; border-radius: 5px;'> | |
<h3>Statistics:</h3> | |
<p>Total Spaces: {total_spaces}</p> | |
<p>Total Likes: {total_likes:,}</p> | |
</div> | |
<div style='max-height: 500px; overflow-y: auto;'> | |
""" | |
for _, row in spaces.iterrows(): | |
html_content += f""" | |
<div style='margin: 10px; padding: 15px; border: 1px solid #ddd; border-radius: 5px; background-color: white;'> | |
<h3><a href='{row['url']}' target='_blank' style='color: #2196F3; text-decoration: none;'>{row['title']}</a></h3> | |
<p>Category: {row['category']}</p> | |
<p>❤️ {row['likes']:,} likes</p> | |
</div> | |
""" | |
html_content += "</div>" | |
return html_content | |
# Create the Gradio interface | |
def create_app(): | |
with gr.Blocks(title="Hugging Face Spaces Explorer", theme=gr.themes.Soft()) as app: | |
gr.Markdown(""" | |
# 🤗 Hugging Face Spaces Explorer | |
Explore and discover popular Hugging Face Spaces by category | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Category selection | |
category_dropdown = gr.Dropdown( | |
choices=["All Categories"] + sorted(df['category'].unique()), | |
label="Select Category", | |
value="All Categories" | |
) | |
# Search box | |
search_input = gr.Textbox( | |
label="Search Spaces", | |
placeholder="Enter search terms..." | |
) | |
# Display area for spaces | |
spaces_display = gr.HTML(value=search_spaces("", "All Categories")) | |
# Update display when category or search changes | |
category_dropdown.change( | |
fn=search_spaces, | |
inputs=[search_input, category_dropdown], | |
outputs=spaces_display | |
) | |
search_input.change( | |
fn=search_spaces, | |
inputs=[search_input, category_dropdown], | |
outputs=spaces_display | |
) | |
return app | |
# Launch the app | |
app = create_app() | |
app.launch(share=True) |