File size: 7,441 Bytes
3403bc2
 
fb53d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403bc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi
from collections import defaultdict

# ------------------------------------------------------
# Get spaces with more details
api = HfApi()
spaces = api.list_spaces(limit=40000)  # Limiting to 40000 for now

# Create a DataFrame
data = []
for space in spaces:
    data.append({
        'id': space.id,
        'title': space.id.split('/')[-1],
        'author': space.author if space.author else space.id.split('/')[0],
        'likes': space.likes,
        'tags': space.tags if hasattr(space, 'tags') else [],
    })

df = pd.DataFrame(data)
print("Total spaces collected:", len(df))
print("\nSample of the data:")
print(df.head())

# ------------------------------------------------------

# Define categories and their keywords
categories = {
    'Text-to-Speech': ['tts', 'speech', 'voice', 'audio', 'kokoro'],
    'Transcription': ['transcribe', 'transcription'],
    'Agents': ['agent', 'agents', 'smol', 'multi-step', 'autobot', 'autoGPT' 'agentic'],
    'Image Generation': ['stable-diffusion', 'diffusion', 'gan', 'image', 'img2img', 'style', 'art'],
    'Video': ['video', 'animation', 'motion', 'sora'],
    'Face/Portrait': ['face', 'portrait', 'gaze', 'facial'],
    'Chat/LLM': ['chat', 'llm', 'gpt', 'llama', 'text', 'language'],
    '3D': ['3d', 'mesh', 'point-cloud', 'depth'],
    'Audio': ['audio', 'music', 'sound', 'voice'],
    'Vision': ['vision', 'detection', 'recognition', 'classifier'],
    'CLIP': ['image-to-text', 'describe-image'],
    'Games': ['game', 'games', 'play', 'playground'],
    'Finance': ['finance', 'stock', 'money', 'currency', 'bank', 'market'],
    'SAM': ['sam', 'segmentation', 'mask'],
    'Science': ['science', 'physics', 'chemistry', 'biology', 'math', 'astronomy', 'geology', 'meteorology', 'engineering', 'medicine', 'health', 'nutrition', 'environment', 'ecology', 'geography', 'geology', 'geophysics'],
    'Education': ['education', 'school', 'university', 'college', 'teaching', 'learning', 'study', 'research'],
    'Graph': ['graph', 'network', 'node', 'edge', 'path', 'tree', 'cycle', 'flow', 'matching', 'coloring', 'swarm'],
    'Research': ['research', 'study', 'experiment', 'paper', 'discovery', 'innovation', 'exploration', 'analysis'],
    'Document Analyis': ['pdf', 'RAG', 'idefecs'],
    'WebGPU': ['localModel', 'webGPU'],
    'Point Tracking': ['CoTracker', 'tapir', 'tapnet', 'point', 'track'],
    'Games': ['game', 'Unity', 'UE5', 'Unreal'],
    'Leaderboard': ['arena', 'leaderboard', 'timeline'],
    'Other': []  # Default category
}

def categorize_space(title, tags):
    title_lower = title.lower()
    # Convert tags to lowercase if tags exist
    tags_lower = [t.lower() for t in tags] if tags else []
    
    for category, keywords in categories.items():
        # Check both title and tags for keywords
        if any(keyword in title_lower for keyword in keywords) or \
           any(keyword in tag for keyword in keywords for tag in tags_lower):
            return category
    return 'Other'

# Add category to DataFrame
df['category'] = df.apply(lambda x: categorize_space(x['title'], x['tags']), axis=1)

# Show category distribution
category_counts = df['category'].value_counts()
print("\nCategory Distribution:")
print(category_counts)

# Show sample spaces from each category
print("\nSample spaces from each category:")
for category in categories.keys():
    print(f"\n{category}:")
    sample = df[df['category'] == category].head(3)
    print(sample[['title', 'likes']].to_string())
    
# ------------------------------------------------------
# Add total likes per category
category_likes = df.groupby('category')['likes'].sum().sort_values(ascending=False)
print("Total likes per category:")
print(category_likes)

print("\nTop 10 spaces in each category (sorted by likes):")
for category in categories.keys():
    print(f"\n=== {category} ===")
    top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes']]
    # Format output with padding for better readability
    print(top_10.to_string(index=False))

# ------------------------------------------------------

# Add space URLs
df['url'] = 'https://huggingface.co./spaces/' + df['id']

# Let's show the top 5 spaces from each category with their links
print("Top 5 spaces in each category with links:")
for category in categories.keys():
    print(f"\n=== {category} ===")
    top_5 = df[df['category'] == category].nlargest(5, 'likes')[['title', 'likes', 'url']]
    # Format output with padding for better readability
    print(top_5.to_string(index=False))

# ------------------------------------------------------

def search_spaces(search_text, category):
    if category == "All Categories":
        spaces_df = df
    else:
        spaces_df = df[df['category'] == category]
    
    if search_text:
        spaces_df = spaces_df[spaces_df['title'].str.lower().str.contains(search_text.lower())]
    
    spaces = spaces_df.nlargest(20, 'likes')[['title', 'likes', 'url', 'category']]
    
    # Get category stats
    total_spaces = len(spaces_df)
    total_likes = spaces_df['likes'].sum()
    
    # Format the results as HTML with clickable links and stats
    html_content = f"""
    <div style='margin-bottom: 20px; padding: 10px; background-color: #f5f5f5; border-radius: 5px;'>
        <h3>Statistics:</h3>
        <p>Total Spaces: {total_spaces}</p>
        <p>Total Likes: {total_likes:,}</p>
    </div>
    <div style='max-height: 500px; overflow-y: auto;'>
    """
    
    for _, row in spaces.iterrows():
        html_content += f"""
        <div style='margin: 10px; padding: 15px; border: 1px solid #ddd; border-radius: 5px; background-color: white;'>
            <h3><a href='{row['url']}' target='_blank' style='color: #2196F3; text-decoration: none;'>{row['title']}</a></h3>
            <p>Category: {row['category']}</p>
            <p>❤️ {row['likes']:,} likes</p>
        </div>
        """
    html_content += "</div>"
    return html_content

# Create the Gradio interface
def create_app():
    with gr.Blocks(title="Hugging Face Spaces Explorer", theme=gr.themes.Soft()) as app:
        gr.Markdown("""
        # 🤗 Hugging Face Spaces Explorer
        Explore and discover popular Hugging Face Spaces by category
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # Category selection
                category_dropdown = gr.Dropdown(
                    choices=["All Categories"] + sorted(df['category'].unique()),
                    label="Select Category",
                    value="All Categories"
                )
                # Search box
                search_input = gr.Textbox(
                    label="Search Spaces",
                    placeholder="Enter search terms..."
                )
            
        # Display area for spaces
        spaces_display = gr.HTML(value=search_spaces("", "All Categories"))
        
        # Update display when category or search changes
        category_dropdown.change(
            fn=search_spaces,
            inputs=[search_input, category_dropdown],
            outputs=spaces_display
        )
        search_input.change(
            fn=search_spaces,
            inputs=[search_input, category_dropdown],
            outputs=spaces_display
        )
    
    return app

# Launch the app
app = create_app()
app.launch(share=True)