File size: 4,443 Bytes
8fa6ab2
 
4172f44
8fa6ab2
 
 
 
 
3666985
8fa6ab2
 
 
 
 
7362041
 
a889d2d
8fa6ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3666985
 
 
8fa6ab2
 
7362041
 
8fa6ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff19e29
 
 
 
 
 
8fa6ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4172f44
ff19e29
 
 
 
 
 
 
 
 
8fa6ab2
 
 
 
 
 
 
 
 
4172f44
008ff9d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from typing import Optional

import gradio as gr
import numpy as np
import torch
from PIL import Image
import io

import spaces
import base64, os
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
import torch
from PIL import Image

# Model source: https://huggingface.co./microsoft/OmniParser
# gr.load("models/microsoft/OmniParser").launch()
MODEL="microsoft/OmniParser"
yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
platform = 'pc'
if platform == 'pc':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 2,
        'thickness': 2,
    }
elif platform == 'web':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 3,
        'thickness': 3,
    }
elif platform == 'mobile':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 3,
        'thickness': 3,
    }



MARKDOWN = """
# OmniParser for Pure Vision Based General GUI Agent 🔥
<div>
    <a href="https://arxiv.org/pdf/2408.00203">
        <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
    </a>
</div>

OmniParser is a screen parsing tool to convert general GUI screen to structured elements. 
"""

DEVICE = torch.device('cuda')

# @spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
@spaces.GPU
def process(
    image_input,
    box_threshold=0.01,
    iou_threshold=0.01
) -> Optional[Image.Image]:

    image_save_path = 'imgs/saved_image_demo.png'
    image_input.save(image_save_path)
    # import pdb; pdb.set_trace()

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
    text, ocr_bbox = ocr_bbox_rslt
    # print('prompt:', prompt)
    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold)
    image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
    print('finish processing')
    parsed_content_list = '\n'.join(parsed_content_list)
    return image, str(parsed_content_list)

examples = [
    ["./imgs/google_page.png", 0.05, 0.1],
    ["./imgs/logo.png", 0.2, 0.15],
    ["./imgs/windows_home.png", 0.1, 0.05],
    ["./imgs/windows_multitab.png", 0.1, 0.05]
]


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(
                type='pil', label='Upload image')
            # set the threshold for removing the bounding boxes with low confidence, default is 0.05
            box_threshold_component = gr.Slider(
                label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
            # set the threshold for removing the bounding boxes with large overlap, default is 0.1
            iou_threshold_component = gr.Slider(
                label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
            submit_button_component = gr.Button(
                value='Submit', variant='primary')
        with gr.Column():
            image_output_component = gr.Image(type='pil', label='Image Output')
            text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')

    gr.Examples(
        examples=examples,
        inputs=[image_input_component],
        outputs=[image_output_component, text_output_component],
        fn=process,  # Function to execute
        cache_examples="lazy"  # Enables lazy caching for examples
    )


    submit_button_component.click(
        fn=process,
        inputs=[
            image_input_component,
            box_threshold_component,
            iou_threshold_component
        ],
        outputs=[image_output_component, text_output_component]
    )

demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')