jadechoghari commited on
Commit
8fa6ab2
1 Parent(s): e682d93

add app.py

Browse files
Files changed (1) hide show
  1. app.py +105 -4
app.py CHANGED
@@ -1,7 +1,108 @@
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
1
+ from typing import Optional
2
+
3
  import gradio as gr
4
+ import numpy as np
5
+ import torch
6
+ from PIL import Image
7
+ import io
8
+
9
+
10
+ import base64, os
11
+ from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
12
+ import torch
13
+ from PIL import Image
14
+
15
+ yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
16
+ caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
17
+ platform = 'pc'
18
+ if platform == 'pc':
19
+ draw_bbox_config = {
20
+ 'text_scale': 0.8,
21
+ 'text_thickness': 2,
22
+ 'text_padding': 2,
23
+ 'thickness': 2,
24
+ }
25
+ elif platform == 'web':
26
+ draw_bbox_config = {
27
+ 'text_scale': 0.8,
28
+ 'text_thickness': 2,
29
+ 'text_padding': 3,
30
+ 'thickness': 3,
31
+ }
32
+ elif platform == 'mobile':
33
+ draw_bbox_config = {
34
+ 'text_scale': 0.8,
35
+ 'text_thickness': 2,
36
+ 'text_padding': 3,
37
+ 'thickness': 3,
38
+ }
39
+
40
+
41
+
42
+ MARKDOWN = """
43
+ # OmniParser for Pure Vision Based General GUI Agent 🔥
44
+ <div>
45
+ <a href="https://arxiv.org/pdf/2408.00203">
46
+ <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
47
+ </a>
48
+ </div>
49
+
50
+ OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
51
+ """
52
+
53
+ DEVICE = torch.device('cuda')
54
+
55
+ # @spaces.GPU
56
+ # @torch.inference_mode()
57
+ # @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
58
+ def process(
59
+ image_input,
60
+ box_threshold,
61
+ iou_threshold
62
+ ) -> Optional[Image.Image]:
63
+
64
+ image_save_path = 'imgs/saved_image_demo.png'
65
+ image_input.save(image_save_path)
66
+ # import pdb; pdb.set_trace()
67
+
68
+ ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
69
+ text, ocr_bbox = ocr_bbox_rslt
70
+ # print('prompt:', prompt)
71
+ dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold)
72
+ image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
73
+ print('finish processing')
74
+ parsed_content_list = '\n'.join(parsed_content_list)
75
+ return image, str(parsed_content_list)
76
+
77
+
78
+
79
+ with gr.Blocks() as demo:
80
+ gr.Markdown(MARKDOWN)
81
+ with gr.Row():
82
+ with gr.Column():
83
+ image_input_component = gr.Image(
84
+ type='pil', label='Upload image')
85
+ # set the threshold for removing the bounding boxes with low confidence, default is 0.05
86
+ box_threshold_component = gr.Slider(
87
+ label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
88
+ # set the threshold for removing the bounding boxes with large overlap, default is 0.1
89
+ iou_threshold_component = gr.Slider(
90
+ label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
91
+ submit_button_component = gr.Button(
92
+ value='Submit', variant='primary')
93
+ with gr.Column():
94
+ image_output_component = gr.Image(type='pil', label='Image Output')
95
+ text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
96
 
97
+ submit_button_component.click(
98
+ fn=process,
99
+ inputs=[
100
+ image_input_component,
101
+ box_threshold_component,
102
+ iou_threshold_component
103
+ ],
104
+ outputs=[image_output_component, text_output_component]
105
+ )
106
 
107
+ # demo.launch(debug=False, show_error=True, share=True)
108
+ demo.launch(share=True, server_port=7861, server_name='0.0.0.0')