Spaces:
Runtime error
Runtime error
File size: 4,026 Bytes
1e522dd b38f031 1e522dd b38f031 1e522dd b38f031 1e522dd b38f031 1e522dd b38f031 1e522dd b38f031 1e522dd b38f031 1e522dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
# goal: store results from app.py into vector store
from structured_apparatus_chain import (
arxiv_chain as apparatus_arxiv_chain,
pub_med_chain as apparatus_pub_med_chain,
wikipedia_chain as apparatus_wikipedia_chain
)
from structured_experiment_chain import (
arxiv_chain as experiment_arxiv_chain,
pub_med_chain as experiment_pub_med_chain,
wikipedia_chain as experiment_wikipedia_chain
)
# from google_buckets import upload_file, man
from weaviate_utils import init_client
from datetime import datetime, timezone
from gradio_client import Client as ShapEClient
import os
from google_buckets import CloudStorageManager
from utils import copy_file_to_location
def main():
# exp_qury = "fabricating cellolouse based electronics"
# exp_qury = "fabrication of spider silk"
# app_query = "microscope"
# app_query = "A gas Condenser"
app_query = "Electron Microscope"
app_data = apparatus_arxiv_chain.invoke(app_query)
# exp_data = experiment_arxiv_chain.invoke(exp_qury)
weaviate_client = init_client()
component_collection = weaviate_client.collections.get("Component")
component_image_collection = weaviate_client.collections.get("ComponentImage")
science_experiment_collection = weaviate_client.collections.get("ScienceEperiment")
bucket_name = os.getenv('GOOGLE_BUCKET_NAME')
manager = CloudStorageManager(bucket_name)
app_components = app_data["Material"]
for i in app_components:
client = ShapEClient("hysts/Shap-E")
client.hf_token = os.getenv("HUGGINGFACE_API_KEY")
result = client.predict(
i, # str in 'Prompt' Textbox component
1621396601, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component
15, # float (numeric value between 1 and 20) in 'Guidance scale' Slider component
64, # float (numeric value between 2 and 100) in 'Number of inference steps' Slider component
api_name="/text-to-3d"
)
app_uuid = component_collection.data.insert({
"Tags": app_data['Fields_of_study'],
"FeildsOfStudy" : app_data['Fields_of_study'],
"ToolName" : i,
"UsedInComps" : [app_query]
})
glb_file_name = app_uuid.hex + ".glb"
manager.upload_file(
result,
glb_file_name,
)
# copy_file_to_location(result,glb_file_name)
# upload_file(glb_file_name)
# os.remove(glb_file_name)
x = 0
response = component_collection.query.bm25(
query="something that goes in a microscope",
limit=5
)
# exp_uuid = science_experiment_collection.data.insert({
# # "DateCreated": datetime.now(timezone.utc),
# "FieldsOfStudy": exp_data['Fields_of_study'],
# "Tags": exp_data['Fields_of_study'],
# "Experiment_Name": exp_data['Experiment_Name'],
# "Material": exp_data['Material'],
# "Sources": exp_data['Sources'],
# "Protocal": exp_data['Protocal'],
# "Purpose_of_Experiments": exp_data['Purpose_of_Experiments'],
# "Safety_Precaution": exp_data['Safety_Precuation'], # Corrected spelling mistake
# "Level_of_Difficulty": exp_data['Level_of_Difficulty'],
# })
response = science_experiment_collection.query.bm25(
query="silk",
limit=3
)
jj = science_experiment_collection.query.near_text(
query="biology",
limit=2
)
# uuid = component_collection.data.insert({
# "DateCreated" : datetime.now(timezone.utc),
# "UsedInComps" : [query],
# "ToolName" : shap_e_sample,
# "Tags" : shap_e_list,
# "feildsOfStudy" : shap_e_list,
# # "GlbBlob" : base_64_result,
# })
x = 0
if __name__ == '__main__':
main()
|