Spaces:
Runtime error
Runtime error
adding more features to the app
Browse files- app.py +47 -8
- chain_apparatarus_weaviate.py +89 -0
- chain_weaviate.py → chain_experiments_weaviate.py +5 -0
- mesh_utils.py +48 -0
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from structured_apparatus_chain import (
|
3 |
arxiv_chain as apparatus_arxiv_chain,
|
4 |
pub_med_chain as apparatus_pub_med_chain,
|
@@ -10,7 +12,6 @@ from structured_experiment_chain import (
|
|
10 |
wikipedia_chain as experiment_wikipedia_chain
|
11 |
)
|
12 |
|
13 |
-
from weaviate_utils import init_client
|
14 |
|
15 |
apparatus_retriever_options = {
|
16 |
"Arxiv": apparatus_arxiv_chain,
|
@@ -27,6 +28,19 @@ experiment_retriever_options = {
|
|
27 |
def generate_apparatus(input_text, retriever_choice):
|
28 |
selected_chain = apparatus_retriever_options[retriever_choice]
|
29 |
output_text = selected_chain.invoke(input_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return output_text
|
31 |
|
32 |
def generate_experiment(input_text, retriever_choice):
|
@@ -51,15 +65,31 @@ def generate_experiment(input_text, retriever_choice):
|
|
51 |
})
|
52 |
return output_text
|
53 |
|
54 |
-
def
|
55 |
# Example processing function
|
56 |
weaviate_client = init_client()
|
57 |
science_experiment_collection = weaviate_client.collections.get("ScienceEperiment")
|
58 |
response = science_experiment_collection.query.bm25(
|
59 |
query=input_text,
|
60 |
-
limit=
|
61 |
)
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
generate_apparatus_interface = gr.Interface(
|
65 |
fn=generate_apparatus,
|
@@ -77,19 +107,28 @@ generate_experiment_interface = gr.Interface(
|
|
77 |
description="I am here to generate and store science experiments for our users",
|
78 |
)
|
79 |
|
80 |
-
|
81 |
-
fn=
|
82 |
inputs=["text", gr.Slider(minimum=2, maximum=6, step=1, value=2, label="Select a number")],
|
83 |
outputs="text",
|
84 |
title="Search Existing Experiments",
|
85 |
description="If you would like an idea of the experiments in the vectorestore here is the place",
|
86 |
)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
demo = gr.TabbedInterface([
|
89 |
generate_apparatus_interface,
|
90 |
generate_experiment_interface,
|
91 |
-
|
92 |
-
|
|
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from weaviate_utils import init_client
|
3 |
+
|
4 |
from structured_apparatus_chain import (
|
5 |
arxiv_chain as apparatus_arxiv_chain,
|
6 |
pub_med_chain as apparatus_pub_med_chain,
|
|
|
12 |
wikipedia_chain as experiment_wikipedia_chain
|
13 |
)
|
14 |
|
|
|
15 |
|
16 |
apparatus_retriever_options = {
|
17 |
"Arxiv": apparatus_arxiv_chain,
|
|
|
28 |
def generate_apparatus(input_text, retriever_choice):
|
29 |
selected_chain = apparatus_retriever_options[retriever_choice]
|
30 |
output_text = selected_chain.invoke(input_text)
|
31 |
+
weaviate_client = init_client()
|
32 |
+
app_components = output_text["Material"]
|
33 |
+
component_collection = weaviate_client.collections.get("Component")
|
34 |
+
|
35 |
+
for i in app_components:
|
36 |
+
|
37 |
+
app_uuid = component_collection.data.insert({
|
38 |
+
"Tags": output_text['Fields_of_study'],
|
39 |
+
"FeildsOfStudy" : output_text['Fields_of_study'],
|
40 |
+
"ToolName" : i,
|
41 |
+
"UsedInComps" : [input_text]
|
42 |
+
})
|
43 |
+
|
44 |
return output_text
|
45 |
|
46 |
def generate_experiment(input_text, retriever_choice):
|
|
|
65 |
})
|
66 |
return output_text
|
67 |
|
68 |
+
def search_experiments(input_text, number):
|
69 |
# Example processing function
|
70 |
weaviate_client = init_client()
|
71 |
science_experiment_collection = weaviate_client.collections.get("ScienceEperiment")
|
72 |
response = science_experiment_collection.query.bm25(
|
73 |
query=input_text,
|
74 |
+
limit=number
|
75 |
)
|
76 |
+
weaviate_client.close()
|
77 |
+
response_objects_string = "\n\n".join([str(obj) for obj in response.objects])
|
78 |
+
return response_objects_string
|
79 |
+
|
80 |
+
def search_apparatus(input_text, number):
|
81 |
+
# Example processing function
|
82 |
+
weaviate_client = init_client()
|
83 |
+
component_collection = weaviate_client.collections.get("Component")
|
84 |
+
response = component_collection.query.bm25(
|
85 |
+
query=input_text,
|
86 |
+
limit=number
|
87 |
+
)
|
88 |
+
# print(response.objects.__str__())
|
89 |
+
response_objects_string = "\n\n".join([str(obj) for obj in response.objects])
|
90 |
+
weaviate_client.close()
|
91 |
+
|
92 |
+
return response_objects_string
|
93 |
|
94 |
generate_apparatus_interface = gr.Interface(
|
95 |
fn=generate_apparatus,
|
|
|
107 |
description="I am here to generate and store science experiments for our users",
|
108 |
)
|
109 |
|
110 |
+
search_experiments_interface = gr.Interface(
|
111 |
+
fn=search_experiments,
|
112 |
inputs=["text", gr.Slider(minimum=2, maximum=6, step=1, value=2, label="Select a number")],
|
113 |
outputs="text",
|
114 |
title="Search Existing Experiments",
|
115 |
description="If you would like an idea of the experiments in the vectorestore here is the place",
|
116 |
)
|
117 |
|
118 |
+
search_apparatus_interface = gr.Interface(
|
119 |
+
fn=search_apparatus,
|
120 |
+
inputs=["text", gr.Slider(minimum=2, maximum=6, step=1, value=2, label="Select a number")],
|
121 |
+
outputs="text",
|
122 |
+
title="Search Existing Apparatuses",
|
123 |
+
description="If you would like an idea of the apparatuses in the vectorestore here is the place",
|
124 |
+
)
|
125 |
+
|
126 |
demo = gr.TabbedInterface([
|
127 |
generate_apparatus_interface,
|
128 |
generate_experiment_interface,
|
129 |
+
search_experiments_interface,
|
130 |
+
search_apparatus_interface,
|
131 |
+
], ["Generate Apparatus", "Generate Experiment", "Search Existing Experiments","Search Existing Apparatuses"])
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
demo.launch()
|
chain_apparatarus_weaviate.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# goal: store results from app.py into vector store
|
2 |
+
|
3 |
+
from structured_apparatus_chain import (
|
4 |
+
arxiv_chain as apparatus_arxiv_chain,
|
5 |
+
pub_med_chain as apparatus_pub_med_chain,
|
6 |
+
wikipedia_chain as apparatus_wikipedia_chain
|
7 |
+
)
|
8 |
+
from structured_experiment_chain import (
|
9 |
+
arxiv_chain as experiment_arxiv_chain,
|
10 |
+
pub_med_chain as experiment_pub_med_chain,
|
11 |
+
wikipedia_chain as experiment_wikipedia_chain
|
12 |
+
)
|
13 |
+
|
14 |
+
from weaviate_utils import init_client
|
15 |
+
|
16 |
+
from datetime import datetime, timezone
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def main():
|
22 |
+
# exp_qury = "fabricating cellolouse based electronics"
|
23 |
+
# exp_qury = "fabrication of spider silk"
|
24 |
+
# app_query = "microscope"
|
25 |
+
# app_query = "A gas Condenser"
|
26 |
+
app_query = "Electron Microscope"
|
27 |
+
app_data = apparatus_arxiv_chain.invoke(app_query)
|
28 |
+
# exp_data = experiment_arxiv_chain.invoke(exp_qury)
|
29 |
+
|
30 |
+
weaviate_client = init_client()
|
31 |
+
|
32 |
+
component_collection = weaviate_client.collections.get("Component")
|
33 |
+
component_image_collection = weaviate_client.collections.get("ComponentImage")
|
34 |
+
science_experiment_collection = weaviate_client.collections.get("ScienceEperiment")
|
35 |
+
|
36 |
+
app_components = app_data["Material"]
|
37 |
+
|
38 |
+
for i in app_components:
|
39 |
+
|
40 |
+
app_uuid = component_collection.data.insert({
|
41 |
+
"Tags": app_data['Fields_of_study'],
|
42 |
+
"FeildsOfStudy" : app_data['Fields_of_study'],
|
43 |
+
"ToolName" : i,
|
44 |
+
"UsedInComps" : [app_query]
|
45 |
+
})
|
46 |
+
|
47 |
+
response = component_collection.query.bm25(
|
48 |
+
query="something that goes in a microscope",
|
49 |
+
limit=5
|
50 |
+
)
|
51 |
+
|
52 |
+
# exp_uuid = science_experiment_collection.data.insert({
|
53 |
+
# # "DateCreated": datetime.now(timezone.utc),
|
54 |
+
# "FieldsOfStudy": exp_data['Fields_of_study'],
|
55 |
+
# "Tags": exp_data['Fields_of_study'],
|
56 |
+
# "Experiment_Name": exp_data['Experiment_Name'],
|
57 |
+
# "Material": exp_data['Material'],
|
58 |
+
# "Sources": exp_data['Sources'],
|
59 |
+
# "Protocal": exp_data['Protocal'],
|
60 |
+
# "Purpose_of_Experiments": exp_data['Purpose_of_Experiments'],
|
61 |
+
# "Safety_Precaution": exp_data['Safety_Precuation'], # Corrected spelling mistake
|
62 |
+
# "Level_of_Difficulty": exp_data['Level_of_Difficulty'],
|
63 |
+
# })
|
64 |
+
|
65 |
+
response = science_experiment_collection.query.bm25(
|
66 |
+
query="silk",
|
67 |
+
limit=3
|
68 |
+
)
|
69 |
+
|
70 |
+
jj = science_experiment_collection.query.near_text(
|
71 |
+
query="biology",
|
72 |
+
limit=2
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
# uuid = component_collection.data.insert({
|
78 |
+
# "DateCreated" : datetime.now(timezone.utc),
|
79 |
+
# "UsedInComps" : [query],
|
80 |
+
# "ToolName" : shap_e_sample,
|
81 |
+
# "Tags" : shap_e_list,
|
82 |
+
# "feildsOfStudy" : shap_e_list,
|
83 |
+
# # "GlbBlob" : base_64_result,
|
84 |
+
# })
|
85 |
+
|
86 |
+
x = 0
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
main()
|
chain_weaviate.py → chain_experiments_weaviate.py
RENAMED
@@ -45,6 +45,11 @@ def main():
|
|
45 |
"Level_of_Difficulty": exp_data['Level_of_Difficulty'],
|
46 |
})
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
jj = science_experiment_collection.query.near_text(
|
49 |
query="biology",
|
50 |
limit=2
|
|
|
45 |
"Level_of_Difficulty": exp_data['Level_of_Difficulty'],
|
46 |
})
|
47 |
|
48 |
+
response = science_experiment_collection.query.bm25(
|
49 |
+
query="silk",
|
50 |
+
limit=3
|
51 |
+
)
|
52 |
+
|
53 |
jj = science_experiment_collection.query.near_text(
|
54 |
query="biology",
|
55 |
limit=2
|
mesh_utils.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from stl import mesh
|
2 |
+
from mpl_toolkits import mplot3d
|
3 |
+
from matplotlib import pyplot as plt
|
4 |
+
from typing import List, Tuple
|
5 |
+
|
6 |
+
def generate_mesh_images(file_path: str, viewing_angles: List[Tuple[int, int]], output_prefix: str = 'mesh_') -> None:
|
7 |
+
"""
|
8 |
+
Generate images of an STL file from different viewing angles.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
file_path (str): Path to the STL file.
|
12 |
+
viewing_angles (List[Tuple[int, int]]): List of tuples containing the elevation and azimuth angles for viewing.
|
13 |
+
output_prefix (str, optional): Prefix for the output image filenames. Defaults to 'mesh_'.
|
14 |
+
"""
|
15 |
+
# Load the STL file
|
16 |
+
your_mesh = mesh.Mesh.from_file(file_path)
|
17 |
+
|
18 |
+
# Iterate over each viewing angle and generate an image
|
19 |
+
for i, (elev, azim) in enumerate(viewing_angles, start=1):
|
20 |
+
# Create a new plot with a larger figure size
|
21 |
+
fig = plt.figure(figsize=(10, 10))
|
22 |
+
ax = fig.add_subplot(111, projection='3d')
|
23 |
+
|
24 |
+
# Add the STL file to the plot
|
25 |
+
ax.add_collection3d(mplot3d.art3d.Poly3DCollection(your_mesh.vectors))
|
26 |
+
|
27 |
+
# Calculate the limits of the mesh
|
28 |
+
max_dim = max(your_mesh.points.flatten())
|
29 |
+
min_dim = min(your_mesh.points.flatten())
|
30 |
+
|
31 |
+
# Set the limits of the plot
|
32 |
+
ax.set_xlim([min_dim, max_dim])
|
33 |
+
ax.set_ylim([min_dim, max_dim])
|
34 |
+
ax.set_zlim([min_dim, max_dim])
|
35 |
+
|
36 |
+
# Set the viewing angle
|
37 |
+
ax.view_init(elev=elev, azim=azim)
|
38 |
+
|
39 |
+
# Save the plot as an image
|
40 |
+
plt.savefig(f'{output_prefix}{i}.png')
|
41 |
+
|
42 |
+
# Close the plot to avoid memory leaks
|
43 |
+
plt.close()
|
44 |
+
|
45 |
+
# Example usage:
|
46 |
+
file_path = 'sample_data.stl'
|
47 |
+
viewing_angles = [(30, 45), (60, 90), (45, 135)]
|
48 |
+
generate_mesh_images(file_path, viewing_angles)
|