Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numpy as np | |
import pytorch_lightning as pl | |
import torch | |
import torchaudio | |
import transformers | |
from vocos.discriminators import MultiPeriodDiscriminator, MultiResolutionDiscriminator | |
from vocos.feature_extractors import FeatureExtractor | |
from vocos.heads import FourierHead | |
from vocos.helpers import plot_spectrogram_to_numpy | |
from vocos.loss import DiscriminatorLoss, GeneratorLoss, FeatureMatchingLoss, MelSpecReconstructionLoss | |
from vocos.models import Backbone | |
from vocos.modules import safe_log | |
class VocosExp(pl.LightningModule): | |
# noinspection PyUnusedLocal | |
def __init__( | |
self, | |
feature_extractor: FeatureExtractor, | |
backbone: Backbone, | |
head: FourierHead, | |
sample_rate: int, | |
initial_learning_rate: float, | |
num_warmup_steps: int = 0, | |
mel_loss_coeff: float = 45, | |
mrd_loss_coeff: float = 1.0, | |
pretrain_mel_steps: int = 0, | |
decay_mel_coeff: bool = False, | |
evaluate_utmos: bool = False, | |
evaluate_pesq: bool = False, | |
evaluate_periodicty: bool = False, | |
): | |
""" | |
Args: | |
feature_extractor (FeatureExtractor): An instance of FeatureExtractor to extract features from audio signals. | |
backbone (Backbone): An instance of Backbone model. | |
head (FourierHead): An instance of Fourier head to generate spectral coefficients and reconstruct a waveform. | |
sample_rate (int): Sampling rate of the audio signals. | |
initial_learning_rate (float): Initial learning rate for the optimizer. | |
num_warmup_steps (int): Number of steps for the warmup phase of learning rate scheduler. Default is 0. | |
mel_loss_coeff (float, optional): Coefficient for Mel-spectrogram loss in the loss function. Default is 45. | |
mrd_loss_coeff (float, optional): Coefficient for Multi Resolution Discriminator loss. Default is 1.0. | |
pretrain_mel_steps (int, optional): Number of steps to pre-train the model without the GAN objective. Default is 0. | |
decay_mel_coeff (bool, optional): If True, the Mel-spectrogram loss coefficient is decayed during training. Default is False. | |
evaluate_utmos (bool, optional): If True, UTMOS scores are computed for each validation run. | |
evaluate_pesq (bool, optional): If True, PESQ scores are computed for each validation run. | |
evaluate_periodicty (bool, optional): If True, periodicity scores are computed for each validation run. | |
""" | |
super().__init__() | |
self.save_hyperparameters(ignore=["feature_extractor", "backbone", "head"]) | |
self.feature_extractor = feature_extractor | |
self.backbone = backbone | |
self.head = head | |
self.multiperioddisc = MultiPeriodDiscriminator() | |
self.multiresddisc = MultiResolutionDiscriminator() | |
self.disc_loss = DiscriminatorLoss() | |
self.gen_loss = GeneratorLoss() | |
self.feat_matching_loss = FeatureMatchingLoss() | |
self.melspec_loss = MelSpecReconstructionLoss(sample_rate=sample_rate) | |
self.train_discriminator = False | |
self.base_mel_coeff = self.mel_loss_coeff = mel_loss_coeff | |
def configure_optimizers(self): | |
disc_params = [ | |
{"params": self.multiperioddisc.parameters()}, | |
{"params": self.multiresddisc.parameters()}, | |
] | |
gen_params = [ | |
{"params": self.feature_extractor.parameters()}, | |
{"params": self.backbone.parameters()}, | |
{"params": self.head.parameters()}, | |
] | |
opt_disc = torch.optim.AdamW(disc_params, lr=self.hparams.initial_learning_rate, betas=(0.8, 0.9)) | |
opt_gen = torch.optim.AdamW(gen_params, lr=self.hparams.initial_learning_rate, betas=(0.8, 0.9)) | |
max_steps = self.trainer.max_steps // 2 # Max steps per optimizer | |
scheduler_disc = transformers.get_cosine_schedule_with_warmup( | |
opt_disc, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=max_steps, | |
) | |
scheduler_gen = transformers.get_cosine_schedule_with_warmup( | |
opt_gen, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=max_steps, | |
) | |
return ( | |
[opt_disc, opt_gen], | |
[{"scheduler": scheduler_disc, "interval": "step"}, {"scheduler": scheduler_gen, "interval": "step"}], | |
) | |
def forward(self, audio_input, **kwargs): | |
features = self.feature_extractor(audio_input, **kwargs) | |
x = self.backbone(features, **kwargs) | |
audio_output = self.head(x) | |
return audio_output | |
def training_step(self, batch, batch_idx, optimizer_idx, **kwargs): | |
audio_input = batch | |
# train discriminator | |
if optimizer_idx == 0 and self.train_discriminator: | |
with torch.no_grad(): | |
audio_hat = self(audio_input, **kwargs) | |
real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(y=audio_input, y_hat=audio_hat, **kwargs,) | |
real_score_mrd, gen_score_mrd, _, _ = self.multiresddisc(y=audio_input, y_hat=audio_hat, **kwargs,) | |
loss_mp, loss_mp_real, _ = self.disc_loss( | |
disc_real_outputs=real_score_mp, disc_generated_outputs=gen_score_mp | |
) | |
loss_mrd, loss_mrd_real, _ = self.disc_loss( | |
disc_real_outputs=real_score_mrd, disc_generated_outputs=gen_score_mrd | |
) | |
loss_mp /= len(loss_mp_real) | |
loss_mrd /= len(loss_mrd_real) | |
loss = loss_mp + self.hparams.mrd_loss_coeff * loss_mrd | |
self.log("discriminator/total", loss, prog_bar=True) | |
self.log("discriminator/multi_period_loss", loss_mp) | |
self.log("discriminator/multi_res_loss", loss_mrd) | |
return loss | |
# train generator | |
if optimizer_idx == 1: | |
audio_hat = self(audio_input, **kwargs) | |
if self.train_discriminator: | |
_, gen_score_mp, fmap_rs_mp, fmap_gs_mp = self.multiperioddisc( | |
y=audio_input, y_hat=audio_hat, **kwargs, | |
) | |
_, gen_score_mrd, fmap_rs_mrd, fmap_gs_mrd = self.multiresddisc( | |
y=audio_input, y_hat=audio_hat, **kwargs, | |
) | |
loss_gen_mp, list_loss_gen_mp = self.gen_loss(disc_outputs=gen_score_mp) | |
loss_gen_mrd, list_loss_gen_mrd = self.gen_loss(disc_outputs=gen_score_mrd) | |
loss_gen_mp = loss_gen_mp / len(list_loss_gen_mp) | |
loss_gen_mrd = loss_gen_mrd / len(list_loss_gen_mrd) | |
loss_fm_mp = self.feat_matching_loss(fmap_r=fmap_rs_mp, fmap_g=fmap_gs_mp) / len(fmap_rs_mp) | |
loss_fm_mrd = self.feat_matching_loss(fmap_r=fmap_rs_mrd, fmap_g=fmap_gs_mrd) / len(fmap_rs_mrd) | |
self.log("generator/multi_period_loss", loss_gen_mp) | |
self.log("generator/multi_res_loss", loss_gen_mrd) | |
self.log("generator/feature_matching_mp", loss_fm_mp) | |
self.log("generator/feature_matching_mrd", loss_fm_mrd) | |
else: | |
loss_gen_mp = loss_gen_mrd = loss_fm_mp = loss_fm_mrd = 0 | |
mel_loss = self.melspec_loss(audio_hat, audio_input) | |
loss = ( | |
loss_gen_mp | |
+ self.hparams.mrd_loss_coeff * loss_gen_mrd | |
+ loss_fm_mp | |
+ self.hparams.mrd_loss_coeff * loss_fm_mrd | |
+ self.mel_loss_coeff * mel_loss | |
) | |
self.log("generator/total_loss", loss, prog_bar=True) | |
self.log("mel_loss_coeff", self.mel_loss_coeff) | |
self.log("generator/mel_loss", mel_loss) | |
if self.global_step % 1000 == 0 and self.global_rank == 0: | |
self.logger.experiment.add_audio( | |
"train/audio_in", audio_input[0].data.cpu(), self.global_step, self.hparams.sample_rate | |
) | |
self.logger.experiment.add_audio( | |
"train/audio_pred", audio_hat[0].data.cpu(), self.global_step, self.hparams.sample_rate | |
) | |
with torch.no_grad(): | |
mel = safe_log(self.melspec_loss.mel_spec(audio_input[0])) | |
mel_hat = safe_log(self.melspec_loss.mel_spec(audio_hat[0])) | |
self.logger.experiment.add_image( | |
"train/mel_target", | |
plot_spectrogram_to_numpy(mel.data.cpu().numpy()), | |
self.global_step, | |
dataformats="HWC", | |
) | |
self.logger.experiment.add_image( | |
"train/mel_pred", | |
plot_spectrogram_to_numpy(mel_hat.data.cpu().numpy()), | |
self.global_step, | |
dataformats="HWC", | |
) | |
return loss | |
def on_validation_epoch_start(self): | |
if self.hparams.evaluate_utmos: | |
from metrics.UTMOS import UTMOSScore | |
if not hasattr(self, "utmos_model"): | |
self.utmos_model = UTMOSScore(device=self.device) | |
def validation_step(self, batch, batch_idx, **kwargs): | |
audio_input = batch | |
audio_hat = self(audio_input, **kwargs) | |
audio_16_khz = torchaudio.functional.resample(audio_input, orig_freq=self.hparams.sample_rate, new_freq=16000) | |
audio_hat_16khz = torchaudio.functional.resample(audio_hat, orig_freq=self.hparams.sample_rate, new_freq=16000) | |
if self.hparams.evaluate_periodicty: | |
from metrics.periodicity import calculate_periodicity_metrics | |
periodicity_loss, pitch_loss, f1_score = calculate_periodicity_metrics(audio_16_khz, audio_hat_16khz) | |
else: | |
periodicity_loss = pitch_loss = f1_score = 0 | |
if self.hparams.evaluate_utmos: | |
utmos_score = self.utmos_model.score(audio_hat_16khz.unsqueeze(1)).mean() | |
else: | |
utmos_score = torch.zeros(1, device=self.device) | |
if self.hparams.evaluate_pesq: | |
from pesq import pesq | |
pesq_score = 0 | |
for ref, deg in zip(audio_16_khz.cpu().numpy(), audio_hat_16khz.cpu().numpy()): | |
pesq_score += pesq(16000, ref, deg, "wb", on_error=1) | |
pesq_score /= len(audio_16_khz) | |
pesq_score = torch.tensor(pesq_score) | |
else: | |
pesq_score = torch.zeros(1, device=self.device) | |
mel_loss = self.melspec_loss(audio_hat.unsqueeze(1), audio_input.unsqueeze(1)) | |
total_loss = mel_loss + (5 - utmos_score) + (5 - pesq_score) | |
return { | |
"val_loss": total_loss, | |
"mel_loss": mel_loss, | |
"utmos_score": utmos_score, | |
"pesq_score": pesq_score, | |
"periodicity_loss": periodicity_loss, | |
"pitch_loss": pitch_loss, | |
"f1_score": f1_score, | |
"audio_input": audio_input[0], | |
"audio_pred": audio_hat[0], | |
} | |
def validation_epoch_end(self, outputs): | |
if self.global_rank == 0: | |
*_, audio_in, audio_pred = outputs[0].values() | |
self.logger.experiment.add_audio( | |
"val_in", audio_in.data.cpu().numpy(), self.global_step, self.hparams.sample_rate | |
) | |
self.logger.experiment.add_audio( | |
"val_pred", audio_pred.data.cpu().numpy(), self.global_step, self.hparams.sample_rate | |
) | |
mel_target = safe_log(self.melspec_loss.mel_spec(audio_in)) | |
mel_hat = safe_log(self.melspec_loss.mel_spec(audio_pred)) | |
self.logger.experiment.add_image( | |
"val_mel_target", | |
plot_spectrogram_to_numpy(mel_target.data.cpu().numpy()), | |
self.global_step, | |
dataformats="HWC", | |
) | |
self.logger.experiment.add_image( | |
"val_mel_hat", | |
plot_spectrogram_to_numpy(mel_hat.data.cpu().numpy()), | |
self.global_step, | |
dataformats="HWC", | |
) | |
avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean() | |
mel_loss = torch.stack([x["mel_loss"] for x in outputs]).mean() | |
utmos_score = torch.stack([x["utmos_score"] for x in outputs]).mean() | |
pesq_score = torch.stack([x["pesq_score"] for x in outputs]).mean() | |
periodicity_loss = np.array([x["periodicity_loss"] for x in outputs]).mean() | |
pitch_loss = np.array([x["pitch_loss"] for x in outputs]).mean() | |
f1_score = np.array([x["f1_score"] for x in outputs]).mean() | |
self.log("val_loss", avg_loss, sync_dist=True) | |
self.log("val/mel_loss", mel_loss, sync_dist=True) | |
self.log("val/utmos_score", utmos_score, sync_dist=True) | |
self.log("val/pesq_score", pesq_score, sync_dist=True) | |
self.log("val/periodicity_loss", periodicity_loss, sync_dist=True) | |
self.log("val/pitch_loss", pitch_loss, sync_dist=True) | |
self.log("val/f1_score", f1_score, sync_dist=True) | |
def global_step(self): | |
""" | |
Override global_step so that it returns the total number of batches processed | |
""" | |
return self.trainer.fit_loop.epoch_loop.total_batch_idx | |
def on_train_batch_start(self, *args): | |
if self.global_step >= self.hparams.pretrain_mel_steps: | |
self.train_discriminator = True | |
else: | |
self.train_discriminator = False | |
def on_train_batch_end(self, *args): | |
def mel_loss_coeff_decay(current_step, num_cycles=0.5): | |
max_steps = self.trainer.max_steps // 2 | |
if current_step < self.hparams.num_warmup_steps: | |
return 1.0 | |
progress = float(current_step - self.hparams.num_warmup_steps) / float( | |
max(1, max_steps - self.hparams.num_warmup_steps) | |
) | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) | |
if self.hparams.decay_mel_coeff: | |
self.mel_loss_coeff = self.base_mel_coeff * mel_loss_coeff_decay(self.global_step + 1) | |
class VocosEncodecExp(VocosExp): | |
""" | |
VocosEncodecExp is a subclass of VocosExp that overrides the parent experiment to function as a conditional GAN. | |
It manages an additional `bandwidth_id` attribute, which denotes a learnable embedding corresponding to | |
a specific bandwidth value of EnCodec. During training, a random bandwidth_id is generated for each step, | |
while during validation, a fixed bandwidth_id is used. | |
""" | |
def __init__( | |
self, | |
feature_extractor: FeatureExtractor, | |
backbone: Backbone, | |
head: FourierHead, | |
sample_rate: int, | |
initial_learning_rate: float, | |
num_warmup_steps: int, | |
mel_loss_coeff: float = 45, | |
mrd_loss_coeff: float = 1.0, | |
pretrain_mel_steps: int = 0, | |
decay_mel_coeff: bool = False, | |
evaluate_utmos: bool = False, | |
evaluate_pesq: bool = False, | |
evaluate_periodicty: bool = False, | |
): | |
super().__init__( | |
feature_extractor, | |
backbone, | |
head, | |
sample_rate, | |
initial_learning_rate, | |
num_warmup_steps, | |
mel_loss_coeff, | |
mrd_loss_coeff, | |
pretrain_mel_steps, | |
decay_mel_coeff, | |
evaluate_utmos, | |
evaluate_pesq, | |
evaluate_periodicty, | |
) | |
# Override with conditional discriminators | |
self.multiperioddisc = MultiPeriodDiscriminator(num_embeddings=len(self.feature_extractor.bandwidths)) | |
self.multiresddisc = MultiResolutionDiscriminator(num_embeddings=len(self.feature_extractor.bandwidths)) | |
def training_step(self, *args): | |
bandwidth_id = torch.randint(low=0, high=len(self.feature_extractor.bandwidths), size=(1,), device=self.device,) | |
output = super().training_step(*args, bandwidth_id=bandwidth_id) | |
return output | |
def validation_step(self, *args): | |
bandwidth_id = torch.tensor([0], device=self.device) | |
output = super().validation_step(*args, bandwidth_id=bandwidth_id) | |
return output | |
def validation_epoch_end(self, outputs): | |
if self.global_rank == 0: | |
*_, audio_in, _ = outputs[0].values() | |
# Resynthesis with encodec for reference | |
self.feature_extractor.encodec.set_target_bandwidth(self.feature_extractor.bandwidths[0]) | |
encodec_audio = self.feature_extractor.encodec(audio_in[None, None, :]) | |
self.logger.experiment.add_audio( | |
"encodec", encodec_audio[0, 0].data.cpu().numpy(), self.global_step, self.hparams.sample_rate, | |
) | |
super().validation_epoch_end(outputs) |