Spaces:
Running
on
Zero
Running
on
Zero
Upload ./vocos/experiment.py with huggingface_hub
Browse files- vocos/experiment.py +371 -0
vocos/experiment.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
import transformers
|
8 |
+
|
9 |
+
from vocos.discriminators import MultiPeriodDiscriminator, MultiResolutionDiscriminator
|
10 |
+
from vocos.feature_extractors import FeatureExtractor
|
11 |
+
from vocos.heads import FourierHead
|
12 |
+
from vocos.helpers import plot_spectrogram_to_numpy
|
13 |
+
from vocos.loss import DiscriminatorLoss, GeneratorLoss, FeatureMatchingLoss, MelSpecReconstructionLoss
|
14 |
+
from vocos.models import Backbone
|
15 |
+
from vocos.modules import safe_log
|
16 |
+
|
17 |
+
|
18 |
+
class VocosExp(pl.LightningModule):
|
19 |
+
# noinspection PyUnusedLocal
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
feature_extractor: FeatureExtractor,
|
23 |
+
backbone: Backbone,
|
24 |
+
head: FourierHead,
|
25 |
+
sample_rate: int,
|
26 |
+
initial_learning_rate: float,
|
27 |
+
num_warmup_steps: int = 0,
|
28 |
+
mel_loss_coeff: float = 45,
|
29 |
+
mrd_loss_coeff: float = 1.0,
|
30 |
+
pretrain_mel_steps: int = 0,
|
31 |
+
decay_mel_coeff: bool = False,
|
32 |
+
evaluate_utmos: bool = False,
|
33 |
+
evaluate_pesq: bool = False,
|
34 |
+
evaluate_periodicty: bool = False,
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
Args:
|
38 |
+
feature_extractor (FeatureExtractor): An instance of FeatureExtractor to extract features from audio signals.
|
39 |
+
backbone (Backbone): An instance of Backbone model.
|
40 |
+
head (FourierHead): An instance of Fourier head to generate spectral coefficients and reconstruct a waveform.
|
41 |
+
sample_rate (int): Sampling rate of the audio signals.
|
42 |
+
initial_learning_rate (float): Initial learning rate for the optimizer.
|
43 |
+
num_warmup_steps (int): Number of steps for the warmup phase of learning rate scheduler. Default is 0.
|
44 |
+
mel_loss_coeff (float, optional): Coefficient for Mel-spectrogram loss in the loss function. Default is 45.
|
45 |
+
mrd_loss_coeff (float, optional): Coefficient for Multi Resolution Discriminator loss. Default is 1.0.
|
46 |
+
pretrain_mel_steps (int, optional): Number of steps to pre-train the model without the GAN objective. Default is 0.
|
47 |
+
decay_mel_coeff (bool, optional): If True, the Mel-spectrogram loss coefficient is decayed during training. Default is False.
|
48 |
+
evaluate_utmos (bool, optional): If True, UTMOS scores are computed for each validation run.
|
49 |
+
evaluate_pesq (bool, optional): If True, PESQ scores are computed for each validation run.
|
50 |
+
evaluate_periodicty (bool, optional): If True, periodicity scores are computed for each validation run.
|
51 |
+
"""
|
52 |
+
super().__init__()
|
53 |
+
self.save_hyperparameters(ignore=["feature_extractor", "backbone", "head"])
|
54 |
+
|
55 |
+
self.feature_extractor = feature_extractor
|
56 |
+
self.backbone = backbone
|
57 |
+
self.head = head
|
58 |
+
|
59 |
+
self.multiperioddisc = MultiPeriodDiscriminator()
|
60 |
+
self.multiresddisc = MultiResolutionDiscriminator()
|
61 |
+
|
62 |
+
self.disc_loss = DiscriminatorLoss()
|
63 |
+
self.gen_loss = GeneratorLoss()
|
64 |
+
self.feat_matching_loss = FeatureMatchingLoss()
|
65 |
+
self.melspec_loss = MelSpecReconstructionLoss(sample_rate=sample_rate)
|
66 |
+
|
67 |
+
self.train_discriminator = False
|
68 |
+
self.base_mel_coeff = self.mel_loss_coeff = mel_loss_coeff
|
69 |
+
|
70 |
+
def configure_optimizers(self):
|
71 |
+
disc_params = [
|
72 |
+
{"params": self.multiperioddisc.parameters()},
|
73 |
+
{"params": self.multiresddisc.parameters()},
|
74 |
+
]
|
75 |
+
gen_params = [
|
76 |
+
{"params": self.feature_extractor.parameters()},
|
77 |
+
{"params": self.backbone.parameters()},
|
78 |
+
{"params": self.head.parameters()},
|
79 |
+
]
|
80 |
+
|
81 |
+
opt_disc = torch.optim.AdamW(disc_params, lr=self.hparams.initial_learning_rate, betas=(0.8, 0.9))
|
82 |
+
opt_gen = torch.optim.AdamW(gen_params, lr=self.hparams.initial_learning_rate, betas=(0.8, 0.9))
|
83 |
+
|
84 |
+
max_steps = self.trainer.max_steps // 2 # Max steps per optimizer
|
85 |
+
scheduler_disc = transformers.get_cosine_schedule_with_warmup(
|
86 |
+
opt_disc, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=max_steps,
|
87 |
+
)
|
88 |
+
scheduler_gen = transformers.get_cosine_schedule_with_warmup(
|
89 |
+
opt_gen, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=max_steps,
|
90 |
+
)
|
91 |
+
|
92 |
+
return (
|
93 |
+
[opt_disc, opt_gen],
|
94 |
+
[{"scheduler": scheduler_disc, "interval": "step"}, {"scheduler": scheduler_gen, "interval": "step"}],
|
95 |
+
)
|
96 |
+
|
97 |
+
def forward(self, audio_input, **kwargs):
|
98 |
+
features = self.feature_extractor(audio_input, **kwargs)
|
99 |
+
x = self.backbone(features, **kwargs)
|
100 |
+
audio_output = self.head(x)
|
101 |
+
return audio_output
|
102 |
+
|
103 |
+
def training_step(self, batch, batch_idx, optimizer_idx, **kwargs):
|
104 |
+
audio_input = batch
|
105 |
+
|
106 |
+
# train discriminator
|
107 |
+
if optimizer_idx == 0 and self.train_discriminator:
|
108 |
+
with torch.no_grad():
|
109 |
+
audio_hat = self(audio_input, **kwargs)
|
110 |
+
|
111 |
+
real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(y=audio_input, y_hat=audio_hat, **kwargs,)
|
112 |
+
real_score_mrd, gen_score_mrd, _, _ = self.multiresddisc(y=audio_input, y_hat=audio_hat, **kwargs,)
|
113 |
+
loss_mp, loss_mp_real, _ = self.disc_loss(
|
114 |
+
disc_real_outputs=real_score_mp, disc_generated_outputs=gen_score_mp
|
115 |
+
)
|
116 |
+
loss_mrd, loss_mrd_real, _ = self.disc_loss(
|
117 |
+
disc_real_outputs=real_score_mrd, disc_generated_outputs=gen_score_mrd
|
118 |
+
)
|
119 |
+
loss_mp /= len(loss_mp_real)
|
120 |
+
loss_mrd /= len(loss_mrd_real)
|
121 |
+
loss = loss_mp + self.hparams.mrd_loss_coeff * loss_mrd
|
122 |
+
|
123 |
+
self.log("discriminator/total", loss, prog_bar=True)
|
124 |
+
self.log("discriminator/multi_period_loss", loss_mp)
|
125 |
+
self.log("discriminator/multi_res_loss", loss_mrd)
|
126 |
+
return loss
|
127 |
+
|
128 |
+
# train generator
|
129 |
+
if optimizer_idx == 1:
|
130 |
+
audio_hat = self(audio_input, **kwargs)
|
131 |
+
if self.train_discriminator:
|
132 |
+
_, gen_score_mp, fmap_rs_mp, fmap_gs_mp = self.multiperioddisc(
|
133 |
+
y=audio_input, y_hat=audio_hat, **kwargs,
|
134 |
+
)
|
135 |
+
_, gen_score_mrd, fmap_rs_mrd, fmap_gs_mrd = self.multiresddisc(
|
136 |
+
y=audio_input, y_hat=audio_hat, **kwargs,
|
137 |
+
)
|
138 |
+
loss_gen_mp, list_loss_gen_mp = self.gen_loss(disc_outputs=gen_score_mp)
|
139 |
+
loss_gen_mrd, list_loss_gen_mrd = self.gen_loss(disc_outputs=gen_score_mrd)
|
140 |
+
loss_gen_mp = loss_gen_mp / len(list_loss_gen_mp)
|
141 |
+
loss_gen_mrd = loss_gen_mrd / len(list_loss_gen_mrd)
|
142 |
+
loss_fm_mp = self.feat_matching_loss(fmap_r=fmap_rs_mp, fmap_g=fmap_gs_mp) / len(fmap_rs_mp)
|
143 |
+
loss_fm_mrd = self.feat_matching_loss(fmap_r=fmap_rs_mrd, fmap_g=fmap_gs_mrd) / len(fmap_rs_mrd)
|
144 |
+
|
145 |
+
self.log("generator/multi_period_loss", loss_gen_mp)
|
146 |
+
self.log("generator/multi_res_loss", loss_gen_mrd)
|
147 |
+
self.log("generator/feature_matching_mp", loss_fm_mp)
|
148 |
+
self.log("generator/feature_matching_mrd", loss_fm_mrd)
|
149 |
+
else:
|
150 |
+
loss_gen_mp = loss_gen_mrd = loss_fm_mp = loss_fm_mrd = 0
|
151 |
+
|
152 |
+
mel_loss = self.melspec_loss(audio_hat, audio_input)
|
153 |
+
loss = (
|
154 |
+
loss_gen_mp
|
155 |
+
+ self.hparams.mrd_loss_coeff * loss_gen_mrd
|
156 |
+
+ loss_fm_mp
|
157 |
+
+ self.hparams.mrd_loss_coeff * loss_fm_mrd
|
158 |
+
+ self.mel_loss_coeff * mel_loss
|
159 |
+
)
|
160 |
+
|
161 |
+
self.log("generator/total_loss", loss, prog_bar=True)
|
162 |
+
self.log("mel_loss_coeff", self.mel_loss_coeff)
|
163 |
+
self.log("generator/mel_loss", mel_loss)
|
164 |
+
|
165 |
+
if self.global_step % 1000 == 0 and self.global_rank == 0:
|
166 |
+
self.logger.experiment.add_audio(
|
167 |
+
"train/audio_in", audio_input[0].data.cpu(), self.global_step, self.hparams.sample_rate
|
168 |
+
)
|
169 |
+
self.logger.experiment.add_audio(
|
170 |
+
"train/audio_pred", audio_hat[0].data.cpu(), self.global_step, self.hparams.sample_rate
|
171 |
+
)
|
172 |
+
with torch.no_grad():
|
173 |
+
mel = safe_log(self.melspec_loss.mel_spec(audio_input[0]))
|
174 |
+
mel_hat = safe_log(self.melspec_loss.mel_spec(audio_hat[0]))
|
175 |
+
self.logger.experiment.add_image(
|
176 |
+
"train/mel_target",
|
177 |
+
plot_spectrogram_to_numpy(mel.data.cpu().numpy()),
|
178 |
+
self.global_step,
|
179 |
+
dataformats="HWC",
|
180 |
+
)
|
181 |
+
self.logger.experiment.add_image(
|
182 |
+
"train/mel_pred",
|
183 |
+
plot_spectrogram_to_numpy(mel_hat.data.cpu().numpy()),
|
184 |
+
self.global_step,
|
185 |
+
dataformats="HWC",
|
186 |
+
)
|
187 |
+
|
188 |
+
return loss
|
189 |
+
|
190 |
+
def on_validation_epoch_start(self):
|
191 |
+
if self.hparams.evaluate_utmos:
|
192 |
+
from metrics.UTMOS import UTMOSScore
|
193 |
+
|
194 |
+
if not hasattr(self, "utmos_model"):
|
195 |
+
self.utmos_model = UTMOSScore(device=self.device)
|
196 |
+
|
197 |
+
def validation_step(self, batch, batch_idx, **kwargs):
|
198 |
+
audio_input = batch
|
199 |
+
audio_hat = self(audio_input, **kwargs)
|
200 |
+
|
201 |
+
audio_16_khz = torchaudio.functional.resample(audio_input, orig_freq=self.hparams.sample_rate, new_freq=16000)
|
202 |
+
audio_hat_16khz = torchaudio.functional.resample(audio_hat, orig_freq=self.hparams.sample_rate, new_freq=16000)
|
203 |
+
|
204 |
+
if self.hparams.evaluate_periodicty:
|
205 |
+
from metrics.periodicity import calculate_periodicity_metrics
|
206 |
+
|
207 |
+
periodicity_loss, pitch_loss, f1_score = calculate_periodicity_metrics(audio_16_khz, audio_hat_16khz)
|
208 |
+
else:
|
209 |
+
periodicity_loss = pitch_loss = f1_score = 0
|
210 |
+
|
211 |
+
if self.hparams.evaluate_utmos:
|
212 |
+
utmos_score = self.utmos_model.score(audio_hat_16khz.unsqueeze(1)).mean()
|
213 |
+
else:
|
214 |
+
utmos_score = torch.zeros(1, device=self.device)
|
215 |
+
|
216 |
+
if self.hparams.evaluate_pesq:
|
217 |
+
from pesq import pesq
|
218 |
+
|
219 |
+
pesq_score = 0
|
220 |
+
for ref, deg in zip(audio_16_khz.cpu().numpy(), audio_hat_16khz.cpu().numpy()):
|
221 |
+
pesq_score += pesq(16000, ref, deg, "wb", on_error=1)
|
222 |
+
pesq_score /= len(audio_16_khz)
|
223 |
+
pesq_score = torch.tensor(pesq_score)
|
224 |
+
else:
|
225 |
+
pesq_score = torch.zeros(1, device=self.device)
|
226 |
+
|
227 |
+
mel_loss = self.melspec_loss(audio_hat.unsqueeze(1), audio_input.unsqueeze(1))
|
228 |
+
total_loss = mel_loss + (5 - utmos_score) + (5 - pesq_score)
|
229 |
+
|
230 |
+
return {
|
231 |
+
"val_loss": total_loss,
|
232 |
+
"mel_loss": mel_loss,
|
233 |
+
"utmos_score": utmos_score,
|
234 |
+
"pesq_score": pesq_score,
|
235 |
+
"periodicity_loss": periodicity_loss,
|
236 |
+
"pitch_loss": pitch_loss,
|
237 |
+
"f1_score": f1_score,
|
238 |
+
"audio_input": audio_input[0],
|
239 |
+
"audio_pred": audio_hat[0],
|
240 |
+
}
|
241 |
+
|
242 |
+
def validation_epoch_end(self, outputs):
|
243 |
+
if self.global_rank == 0:
|
244 |
+
*_, audio_in, audio_pred = outputs[0].values()
|
245 |
+
self.logger.experiment.add_audio(
|
246 |
+
"val_in", audio_in.data.cpu().numpy(), self.global_step, self.hparams.sample_rate
|
247 |
+
)
|
248 |
+
self.logger.experiment.add_audio(
|
249 |
+
"val_pred", audio_pred.data.cpu().numpy(), self.global_step, self.hparams.sample_rate
|
250 |
+
)
|
251 |
+
mel_target = safe_log(self.melspec_loss.mel_spec(audio_in))
|
252 |
+
mel_hat = safe_log(self.melspec_loss.mel_spec(audio_pred))
|
253 |
+
self.logger.experiment.add_image(
|
254 |
+
"val_mel_target",
|
255 |
+
plot_spectrogram_to_numpy(mel_target.data.cpu().numpy()),
|
256 |
+
self.global_step,
|
257 |
+
dataformats="HWC",
|
258 |
+
)
|
259 |
+
self.logger.experiment.add_image(
|
260 |
+
"val_mel_hat",
|
261 |
+
plot_spectrogram_to_numpy(mel_hat.data.cpu().numpy()),
|
262 |
+
self.global_step,
|
263 |
+
dataformats="HWC",
|
264 |
+
)
|
265 |
+
avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
|
266 |
+
mel_loss = torch.stack([x["mel_loss"] for x in outputs]).mean()
|
267 |
+
utmos_score = torch.stack([x["utmos_score"] for x in outputs]).mean()
|
268 |
+
pesq_score = torch.stack([x["pesq_score"] for x in outputs]).mean()
|
269 |
+
periodicity_loss = np.array([x["periodicity_loss"] for x in outputs]).mean()
|
270 |
+
pitch_loss = np.array([x["pitch_loss"] for x in outputs]).mean()
|
271 |
+
f1_score = np.array([x["f1_score"] for x in outputs]).mean()
|
272 |
+
|
273 |
+
self.log("val_loss", avg_loss, sync_dist=True)
|
274 |
+
self.log("val/mel_loss", mel_loss, sync_dist=True)
|
275 |
+
self.log("val/utmos_score", utmos_score, sync_dist=True)
|
276 |
+
self.log("val/pesq_score", pesq_score, sync_dist=True)
|
277 |
+
self.log("val/periodicity_loss", periodicity_loss, sync_dist=True)
|
278 |
+
self.log("val/pitch_loss", pitch_loss, sync_dist=True)
|
279 |
+
self.log("val/f1_score", f1_score, sync_dist=True)
|
280 |
+
|
281 |
+
@property
|
282 |
+
def global_step(self):
|
283 |
+
"""
|
284 |
+
Override global_step so that it returns the total number of batches processed
|
285 |
+
"""
|
286 |
+
return self.trainer.fit_loop.epoch_loop.total_batch_idx
|
287 |
+
|
288 |
+
def on_train_batch_start(self, *args):
|
289 |
+
if self.global_step >= self.hparams.pretrain_mel_steps:
|
290 |
+
self.train_discriminator = True
|
291 |
+
else:
|
292 |
+
self.train_discriminator = False
|
293 |
+
|
294 |
+
def on_train_batch_end(self, *args):
|
295 |
+
def mel_loss_coeff_decay(current_step, num_cycles=0.5):
|
296 |
+
max_steps = self.trainer.max_steps // 2
|
297 |
+
if current_step < self.hparams.num_warmup_steps:
|
298 |
+
return 1.0
|
299 |
+
progress = float(current_step - self.hparams.num_warmup_steps) / float(
|
300 |
+
max(1, max_steps - self.hparams.num_warmup_steps)
|
301 |
+
)
|
302 |
+
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
303 |
+
|
304 |
+
if self.hparams.decay_mel_coeff:
|
305 |
+
self.mel_loss_coeff = self.base_mel_coeff * mel_loss_coeff_decay(self.global_step + 1)
|
306 |
+
|
307 |
+
|
308 |
+
class VocosEncodecExp(VocosExp):
|
309 |
+
"""
|
310 |
+
VocosEncodecExp is a subclass of VocosExp that overrides the parent experiment to function as a conditional GAN.
|
311 |
+
It manages an additional `bandwidth_id` attribute, which denotes a learnable embedding corresponding to
|
312 |
+
a specific bandwidth value of EnCodec. During training, a random bandwidth_id is generated for each step,
|
313 |
+
while during validation, a fixed bandwidth_id is used.
|
314 |
+
"""
|
315 |
+
|
316 |
+
def __init__(
|
317 |
+
self,
|
318 |
+
feature_extractor: FeatureExtractor,
|
319 |
+
backbone: Backbone,
|
320 |
+
head: FourierHead,
|
321 |
+
sample_rate: int,
|
322 |
+
initial_learning_rate: float,
|
323 |
+
num_warmup_steps: int,
|
324 |
+
mel_loss_coeff: float = 45,
|
325 |
+
mrd_loss_coeff: float = 1.0,
|
326 |
+
pretrain_mel_steps: int = 0,
|
327 |
+
decay_mel_coeff: bool = False,
|
328 |
+
evaluate_utmos: bool = False,
|
329 |
+
evaluate_pesq: bool = False,
|
330 |
+
evaluate_periodicty: bool = False,
|
331 |
+
):
|
332 |
+
super().__init__(
|
333 |
+
feature_extractor,
|
334 |
+
backbone,
|
335 |
+
head,
|
336 |
+
sample_rate,
|
337 |
+
initial_learning_rate,
|
338 |
+
num_warmup_steps,
|
339 |
+
mel_loss_coeff,
|
340 |
+
mrd_loss_coeff,
|
341 |
+
pretrain_mel_steps,
|
342 |
+
decay_mel_coeff,
|
343 |
+
evaluate_utmos,
|
344 |
+
evaluate_pesq,
|
345 |
+
evaluate_periodicty,
|
346 |
+
)
|
347 |
+
# Override with conditional discriminators
|
348 |
+
self.multiperioddisc = MultiPeriodDiscriminator(num_embeddings=len(self.feature_extractor.bandwidths))
|
349 |
+
self.multiresddisc = MultiResolutionDiscriminator(num_embeddings=len(self.feature_extractor.bandwidths))
|
350 |
+
|
351 |
+
def training_step(self, *args):
|
352 |
+
bandwidth_id = torch.randint(low=0, high=len(self.feature_extractor.bandwidths), size=(1,), device=self.device,)
|
353 |
+
output = super().training_step(*args, bandwidth_id=bandwidth_id)
|
354 |
+
return output
|
355 |
+
|
356 |
+
def validation_step(self, *args):
|
357 |
+
bandwidth_id = torch.tensor([0], device=self.device)
|
358 |
+
output = super().validation_step(*args, bandwidth_id=bandwidth_id)
|
359 |
+
return output
|
360 |
+
|
361 |
+
def validation_epoch_end(self, outputs):
|
362 |
+
if self.global_rank == 0:
|
363 |
+
*_, audio_in, _ = outputs[0].values()
|
364 |
+
# Resynthesis with encodec for reference
|
365 |
+
self.feature_extractor.encodec.set_target_bandwidth(self.feature_extractor.bandwidths[0])
|
366 |
+
encodec_audio = self.feature_extractor.encodec(audio_in[None, None, :])
|
367 |
+
self.logger.experiment.add_audio(
|
368 |
+
"encodec", encodec_audio[0, 0].data.cpu().numpy(), self.global_step, self.hparams.sample_rate,
|
369 |
+
)
|
370 |
+
|
371 |
+
super().validation_epoch_end(outputs)
|