File size: 8,180 Bytes
2bd0633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from typing import List, Optional, Tuple

import torch
from einops import rearrange
from torch import nn
from torch.nn import Conv2d
from torch.nn.utils import weight_norm
from torchaudio.transforms import Spectrogram


class MultiPeriodDiscriminator(nn.Module):
    """
    Multi-Period Discriminator module adapted from https://github.com/jik876/hifi-gan.
    Additionally, it allows incorporating conditional information with a learned embeddings table.

    Args:
        periods (tuple[int]): Tuple of periods for each discriminator.
        num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
            Defaults to None.
    """

    def __init__(self, periods: Tuple[int, ...] = (2, 3, 5, 7, 11), num_embeddings: Optional[int] = None):
        super().__init__()
        self.discriminators = nn.ModuleList([DiscriminatorP(period=p, num_embeddings=num_embeddings) for p in periods])

    def forward(
        self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: Optional[torch.Tensor] = None
    ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for d in self.discriminators:
            y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
            y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
            y_d_rs.append(y_d_r)
            fmap_rs.append(fmap_r)
            y_d_gs.append(y_d_g)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorP(nn.Module):
    def __init__(
        self,
        period: int,
        in_channels: int = 1,
        kernel_size: int = 5,
        stride: int = 3,
        lrelu_slope: float = 0.1,
        num_embeddings: Optional[int] = None,
    ):
        super().__init__()
        self.period = period
        self.convs = nn.ModuleList(
            [
                weight_norm(Conv2d(in_channels, 32, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
                weight_norm(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
                weight_norm(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
                weight_norm(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
                weight_norm(Conv2d(1024, 1024, (kernel_size, 1), (1, 1), padding=(kernel_size // 2, 0))),
            ]
        )
        if num_embeddings is not None:
            self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=1024)
            torch.nn.init.zeros_(self.emb.weight)

        self.conv_post = weight_norm(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
        self.lrelu_slope = lrelu_slope

    def forward(
        self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        x = x.unsqueeze(1)
        fmap = []
        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0:  # pad first
            n_pad = self.period - (t % self.period)
            x = torch.nn.functional.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for i, l in enumerate(self.convs):
            x = l(x)
            x = torch.nn.functional.leaky_relu(x, self.lrelu_slope)
            if i > 0:
                fmap.append(x)
        if cond_embedding_id is not None:
            emb = self.emb(cond_embedding_id)
            h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
        else:
            h = 0
        x = self.conv_post(x)
        fmap.append(x)
        x += h
        x = torch.flatten(x, 1, -1)

        return x, fmap


class MultiResolutionDiscriminator(nn.Module):
    def __init__(
        self,
        fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
        num_embeddings: Optional[int] = None,
    ):
        """
        Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
        Additionally, it allows incorporating conditional information with a learned embeddings table.

        Args:
            fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
            num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
                Defaults to None.
        """

        super().__init__()
        self.discriminators = nn.ModuleList(
            [DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
        )

    def forward(
        self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
    ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []

        for d in self.discriminators:
            y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
            y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
            y_d_rs.append(y_d_r)
            fmap_rs.append(fmap_r)
            y_d_gs.append(y_d_g)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorR(nn.Module):
    def __init__(
        self,
        window_length: int,
        num_embeddings: Optional[int] = None,
        channels: int = 32,
        hop_factor: float = 0.25,
        bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
    ):
        super().__init__()
        self.window_length = window_length
        self.hop_factor = hop_factor
        self.spec_fn = Spectrogram(
            n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
        )
        n_fft = window_length // 2 + 1
        bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
        self.bands = bands
        convs = lambda: nn.ModuleList(
            [
                weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
                weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
                weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
                weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
                weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
            ]
        )
        self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])

        if num_embeddings is not None:
            self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
            torch.nn.init.zeros_(self.emb.weight)

        self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))

    def spectrogram(self, x):
        # Remove DC offset
        x = x - x.mean(dim=-1, keepdims=True)
        # Peak normalize the volume of input audio
        x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
        x = self.spec_fn(x)
        x = torch.view_as_real(x)
        x = rearrange(x, "b f t c -> b c t f")
        # Split into bands
        x_bands = [x[..., b[0] : b[1]] for b in self.bands]
        return x_bands

    def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
        x_bands = self.spectrogram(x)
        fmap = []
        x = []
        for band, stack in zip(x_bands, self.band_convs):
            for i, layer in enumerate(stack):
                band = layer(band)
                band = torch.nn.functional.leaky_relu(band, 0.1)
                if i > 0:
                    fmap.append(band)
            x.append(band)
        x = torch.cat(x, dim=-1)
        if cond_embedding_id is not None:
            emb = self.emb(cond_embedding_id)
            h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
        else:
            h = 0
        x = self.conv_post(x)
        fmap.append(x)
        x += h

        return x, fmap