KingNish commited on
Commit
2bd0633
·
verified ·
1 Parent(s): b4511c9

Upload ./vocos/discriminators.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. vocos/discriminators.py +211 -0
vocos/discriminators.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple
2
+
3
+ import torch
4
+ from einops import rearrange
5
+ from torch import nn
6
+ from torch.nn import Conv2d
7
+ from torch.nn.utils import weight_norm
8
+ from torchaudio.transforms import Spectrogram
9
+
10
+
11
+ class MultiPeriodDiscriminator(nn.Module):
12
+ """
13
+ Multi-Period Discriminator module adapted from https://github.com/jik876/hifi-gan.
14
+ Additionally, it allows incorporating conditional information with a learned embeddings table.
15
+
16
+ Args:
17
+ periods (tuple[int]): Tuple of periods for each discriminator.
18
+ num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
19
+ Defaults to None.
20
+ """
21
+
22
+ def __init__(self, periods: Tuple[int, ...] = (2, 3, 5, 7, 11), num_embeddings: Optional[int] = None):
23
+ super().__init__()
24
+ self.discriminators = nn.ModuleList([DiscriminatorP(period=p, num_embeddings=num_embeddings) for p in periods])
25
+
26
+ def forward(
27
+ self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: Optional[torch.Tensor] = None
28
+ ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
29
+ y_d_rs = []
30
+ y_d_gs = []
31
+ fmap_rs = []
32
+ fmap_gs = []
33
+ for d in self.discriminators:
34
+ y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
35
+ y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
36
+ y_d_rs.append(y_d_r)
37
+ fmap_rs.append(fmap_r)
38
+ y_d_gs.append(y_d_g)
39
+ fmap_gs.append(fmap_g)
40
+
41
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
42
+
43
+
44
+ class DiscriminatorP(nn.Module):
45
+ def __init__(
46
+ self,
47
+ period: int,
48
+ in_channels: int = 1,
49
+ kernel_size: int = 5,
50
+ stride: int = 3,
51
+ lrelu_slope: float = 0.1,
52
+ num_embeddings: Optional[int] = None,
53
+ ):
54
+ super().__init__()
55
+ self.period = period
56
+ self.convs = nn.ModuleList(
57
+ [
58
+ weight_norm(Conv2d(in_channels, 32, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
59
+ weight_norm(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
60
+ weight_norm(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
61
+ weight_norm(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
62
+ weight_norm(Conv2d(1024, 1024, (kernel_size, 1), (1, 1), padding=(kernel_size // 2, 0))),
63
+ ]
64
+ )
65
+ if num_embeddings is not None:
66
+ self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=1024)
67
+ torch.nn.init.zeros_(self.emb.weight)
68
+
69
+ self.conv_post = weight_norm(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
70
+ self.lrelu_slope = lrelu_slope
71
+
72
+ def forward(
73
+ self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
74
+ ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
75
+ x = x.unsqueeze(1)
76
+ fmap = []
77
+ # 1d to 2d
78
+ b, c, t = x.shape
79
+ if t % self.period != 0: # pad first
80
+ n_pad = self.period - (t % self.period)
81
+ x = torch.nn.functional.pad(x, (0, n_pad), "reflect")
82
+ t = t + n_pad
83
+ x = x.view(b, c, t // self.period, self.period)
84
+
85
+ for i, l in enumerate(self.convs):
86
+ x = l(x)
87
+ x = torch.nn.functional.leaky_relu(x, self.lrelu_slope)
88
+ if i > 0:
89
+ fmap.append(x)
90
+ if cond_embedding_id is not None:
91
+ emb = self.emb(cond_embedding_id)
92
+ h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
93
+ else:
94
+ h = 0
95
+ x = self.conv_post(x)
96
+ fmap.append(x)
97
+ x += h
98
+ x = torch.flatten(x, 1, -1)
99
+
100
+ return x, fmap
101
+
102
+
103
+ class MultiResolutionDiscriminator(nn.Module):
104
+ def __init__(
105
+ self,
106
+ fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
107
+ num_embeddings: Optional[int] = None,
108
+ ):
109
+ """
110
+ Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
111
+ Additionally, it allows incorporating conditional information with a learned embeddings table.
112
+
113
+ Args:
114
+ fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
115
+ num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
116
+ Defaults to None.
117
+ """
118
+
119
+ super().__init__()
120
+ self.discriminators = nn.ModuleList(
121
+ [DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
122
+ )
123
+
124
+ def forward(
125
+ self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
126
+ ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
127
+ y_d_rs = []
128
+ y_d_gs = []
129
+ fmap_rs = []
130
+ fmap_gs = []
131
+
132
+ for d in self.discriminators:
133
+ y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
134
+ y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
135
+ y_d_rs.append(y_d_r)
136
+ fmap_rs.append(fmap_r)
137
+ y_d_gs.append(y_d_g)
138
+ fmap_gs.append(fmap_g)
139
+
140
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
141
+
142
+
143
+ class DiscriminatorR(nn.Module):
144
+ def __init__(
145
+ self,
146
+ window_length: int,
147
+ num_embeddings: Optional[int] = None,
148
+ channels: int = 32,
149
+ hop_factor: float = 0.25,
150
+ bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
151
+ ):
152
+ super().__init__()
153
+ self.window_length = window_length
154
+ self.hop_factor = hop_factor
155
+ self.spec_fn = Spectrogram(
156
+ n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
157
+ )
158
+ n_fft = window_length // 2 + 1
159
+ bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
160
+ self.bands = bands
161
+ convs = lambda: nn.ModuleList(
162
+ [
163
+ weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
164
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
165
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
166
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
167
+ weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
168
+ ]
169
+ )
170
+ self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
171
+
172
+ if num_embeddings is not None:
173
+ self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
174
+ torch.nn.init.zeros_(self.emb.weight)
175
+
176
+ self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
177
+
178
+ def spectrogram(self, x):
179
+ # Remove DC offset
180
+ x = x - x.mean(dim=-1, keepdims=True)
181
+ # Peak normalize the volume of input audio
182
+ x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
183
+ x = self.spec_fn(x)
184
+ x = torch.view_as_real(x)
185
+ x = rearrange(x, "b f t c -> b c t f")
186
+ # Split into bands
187
+ x_bands = [x[..., b[0] : b[1]] for b in self.bands]
188
+ return x_bands
189
+
190
+ def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
191
+ x_bands = self.spectrogram(x)
192
+ fmap = []
193
+ x = []
194
+ for band, stack in zip(x_bands, self.band_convs):
195
+ for i, layer in enumerate(stack):
196
+ band = layer(band)
197
+ band = torch.nn.functional.leaky_relu(band, 0.1)
198
+ if i > 0:
199
+ fmap.append(band)
200
+ x.append(band)
201
+ x = torch.cat(x, dim=-1)
202
+ if cond_embedding_id is not None:
203
+ emb = self.emb(cond_embedding_id)
204
+ h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
205
+ else:
206
+ h = 0
207
+ x = self.conv_post(x)
208
+ fmap.append(x)
209
+ x += h
210
+
211
+ return x, fmap