Spaces:
Running
on
Zero
Running
on
Zero
Upload ./vocos/discriminators.py with huggingface_hub
Browse files- vocos/discriminators.py +211 -0
vocos/discriminators.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from einops import rearrange
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import Conv2d
|
7 |
+
from torch.nn.utils import weight_norm
|
8 |
+
from torchaudio.transforms import Spectrogram
|
9 |
+
|
10 |
+
|
11 |
+
class MultiPeriodDiscriminator(nn.Module):
|
12 |
+
"""
|
13 |
+
Multi-Period Discriminator module adapted from https://github.com/jik876/hifi-gan.
|
14 |
+
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
periods (tuple[int]): Tuple of periods for each discriminator.
|
18 |
+
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
19 |
+
Defaults to None.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, periods: Tuple[int, ...] = (2, 3, 5, 7, 11), num_embeddings: Optional[int] = None):
|
23 |
+
super().__init__()
|
24 |
+
self.discriminators = nn.ModuleList([DiscriminatorP(period=p, num_embeddings=num_embeddings) for p in periods])
|
25 |
+
|
26 |
+
def forward(
|
27 |
+
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: Optional[torch.Tensor] = None
|
28 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
29 |
+
y_d_rs = []
|
30 |
+
y_d_gs = []
|
31 |
+
fmap_rs = []
|
32 |
+
fmap_gs = []
|
33 |
+
for d in self.discriminators:
|
34 |
+
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
35 |
+
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
36 |
+
y_d_rs.append(y_d_r)
|
37 |
+
fmap_rs.append(fmap_r)
|
38 |
+
y_d_gs.append(y_d_g)
|
39 |
+
fmap_gs.append(fmap_g)
|
40 |
+
|
41 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
42 |
+
|
43 |
+
|
44 |
+
class DiscriminatorP(nn.Module):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
period: int,
|
48 |
+
in_channels: int = 1,
|
49 |
+
kernel_size: int = 5,
|
50 |
+
stride: int = 3,
|
51 |
+
lrelu_slope: float = 0.1,
|
52 |
+
num_embeddings: Optional[int] = None,
|
53 |
+
):
|
54 |
+
super().__init__()
|
55 |
+
self.period = period
|
56 |
+
self.convs = nn.ModuleList(
|
57 |
+
[
|
58 |
+
weight_norm(Conv2d(in_channels, 32, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
|
59 |
+
weight_norm(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
|
60 |
+
weight_norm(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
|
61 |
+
weight_norm(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))),
|
62 |
+
weight_norm(Conv2d(1024, 1024, (kernel_size, 1), (1, 1), padding=(kernel_size // 2, 0))),
|
63 |
+
]
|
64 |
+
)
|
65 |
+
if num_embeddings is not None:
|
66 |
+
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=1024)
|
67 |
+
torch.nn.init.zeros_(self.emb.weight)
|
68 |
+
|
69 |
+
self.conv_post = weight_norm(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
70 |
+
self.lrelu_slope = lrelu_slope
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
|
74 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
75 |
+
x = x.unsqueeze(1)
|
76 |
+
fmap = []
|
77 |
+
# 1d to 2d
|
78 |
+
b, c, t = x.shape
|
79 |
+
if t % self.period != 0: # pad first
|
80 |
+
n_pad = self.period - (t % self.period)
|
81 |
+
x = torch.nn.functional.pad(x, (0, n_pad), "reflect")
|
82 |
+
t = t + n_pad
|
83 |
+
x = x.view(b, c, t // self.period, self.period)
|
84 |
+
|
85 |
+
for i, l in enumerate(self.convs):
|
86 |
+
x = l(x)
|
87 |
+
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope)
|
88 |
+
if i > 0:
|
89 |
+
fmap.append(x)
|
90 |
+
if cond_embedding_id is not None:
|
91 |
+
emb = self.emb(cond_embedding_id)
|
92 |
+
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
93 |
+
else:
|
94 |
+
h = 0
|
95 |
+
x = self.conv_post(x)
|
96 |
+
fmap.append(x)
|
97 |
+
x += h
|
98 |
+
x = torch.flatten(x, 1, -1)
|
99 |
+
|
100 |
+
return x, fmap
|
101 |
+
|
102 |
+
|
103 |
+
class MultiResolutionDiscriminator(nn.Module):
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
107 |
+
num_embeddings: Optional[int] = None,
|
108 |
+
):
|
109 |
+
"""
|
110 |
+
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
111 |
+
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
115 |
+
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
116 |
+
Defaults to None.
|
117 |
+
"""
|
118 |
+
|
119 |
+
super().__init__()
|
120 |
+
self.discriminators = nn.ModuleList(
|
121 |
+
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
|
122 |
+
)
|
123 |
+
|
124 |
+
def forward(
|
125 |
+
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
126 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
127 |
+
y_d_rs = []
|
128 |
+
y_d_gs = []
|
129 |
+
fmap_rs = []
|
130 |
+
fmap_gs = []
|
131 |
+
|
132 |
+
for d in self.discriminators:
|
133 |
+
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
134 |
+
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
135 |
+
y_d_rs.append(y_d_r)
|
136 |
+
fmap_rs.append(fmap_r)
|
137 |
+
y_d_gs.append(y_d_g)
|
138 |
+
fmap_gs.append(fmap_g)
|
139 |
+
|
140 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
141 |
+
|
142 |
+
|
143 |
+
class DiscriminatorR(nn.Module):
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
window_length: int,
|
147 |
+
num_embeddings: Optional[int] = None,
|
148 |
+
channels: int = 32,
|
149 |
+
hop_factor: float = 0.25,
|
150 |
+
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
151 |
+
):
|
152 |
+
super().__init__()
|
153 |
+
self.window_length = window_length
|
154 |
+
self.hop_factor = hop_factor
|
155 |
+
self.spec_fn = Spectrogram(
|
156 |
+
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
157 |
+
)
|
158 |
+
n_fft = window_length // 2 + 1
|
159 |
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
160 |
+
self.bands = bands
|
161 |
+
convs = lambda: nn.ModuleList(
|
162 |
+
[
|
163 |
+
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
164 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
165 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
166 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
167 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
168 |
+
]
|
169 |
+
)
|
170 |
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
171 |
+
|
172 |
+
if num_embeddings is not None:
|
173 |
+
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
174 |
+
torch.nn.init.zeros_(self.emb.weight)
|
175 |
+
|
176 |
+
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
177 |
+
|
178 |
+
def spectrogram(self, x):
|
179 |
+
# Remove DC offset
|
180 |
+
x = x - x.mean(dim=-1, keepdims=True)
|
181 |
+
# Peak normalize the volume of input audio
|
182 |
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
183 |
+
x = self.spec_fn(x)
|
184 |
+
x = torch.view_as_real(x)
|
185 |
+
x = rearrange(x, "b f t c -> b c t f")
|
186 |
+
# Split into bands
|
187 |
+
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
188 |
+
return x_bands
|
189 |
+
|
190 |
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
191 |
+
x_bands = self.spectrogram(x)
|
192 |
+
fmap = []
|
193 |
+
x = []
|
194 |
+
for band, stack in zip(x_bands, self.band_convs):
|
195 |
+
for i, layer in enumerate(stack):
|
196 |
+
band = layer(band)
|
197 |
+
band = torch.nn.functional.leaky_relu(band, 0.1)
|
198 |
+
if i > 0:
|
199 |
+
fmap.append(band)
|
200 |
+
x.append(band)
|
201 |
+
x = torch.cat(x, dim=-1)
|
202 |
+
if cond_embedding_id is not None:
|
203 |
+
emb = self.emb(cond_embedding_id)
|
204 |
+
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
205 |
+
else:
|
206 |
+
h = 0
|
207 |
+
x = self.conv_post(x)
|
208 |
+
fmap.append(x)
|
209 |
+
x += h
|
210 |
+
|
211 |
+
return x, fmap
|