TADNE / app.py
hysts's picture
hysts HF staff
Update
3744a88
raw
history blame
3.83 kB
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import random
import shlex
import subprocess
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
if os.environ.get("SYSTEM") == "spaces":
with open("patch") as f:
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
if not torch.cuda.is_available():
with open("patch-cpu") as f:
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
sys.path.insert(0, "stylegan2-pytorch")
from model import Generator
DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist)
Related Apps:
- [TADNE Image Viewer](https://huggingface.co./spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co./spaces/hysts/TADNE-image-selector)
- [TADNE Interpolation](https://huggingface.co./spaces/hysts/TADNE-interpolation)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co./spaces/hysts/TADNE-image-search-with-DeepDanbooru)
"""
SAMPLE_IMAGE_DIR = "https://huggingface.co./spaces/hysts/TADNE/resolve/main/samples"
ARTICLE = f"""## Generated images
- size: 512x512
- truncation: 0.7
- seed: 0-99
![samples]({SAMPLE_IMAGE_DIR}/sample.jpg)
"""
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def load_model(device: torch.device) -> nn.Module:
model = Generator(512, 1024, 4, channel_multiplier=2)
path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt")
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["g_ema"])
model.eval()
model.to(device)
model.latent_avg = checkpoint["latent_avg"].to(device)
with torch.inference_mode():
z = torch.zeros((1, model.style_dim)).to(device)
model([z], truncation=0.7, truncation_latent=model.latent_avg)
return model
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(
seed: int, truncation_psi: float, randomize_noise: bool, model: nn.Module, device: torch.device
) -> np.ndarray:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.style_dim, seed, device)
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
fn = functools.partial(generate_image, model=model, device=device)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
randomize_noise = gr.Checkbox(label="Randomize Noise", value=False)
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Output")
gr.Markdown(ARTICLE)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=fn,
inputs=[seed, psi, randomize_noise],
outputs=result,
api_name="run",
)
demo.queue(max_size=10).launch()