#!/usr/bin/env python from __future__ import annotations import functools import os import random import shlex import subprocess import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download if os.environ.get("SYSTEM") == "spaces": with open("patch") as f: subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f) if not torch.cuda.is_available(): with open("patch-cpu") as f: subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f) sys.path.insert(0, "stylegan2-pytorch") from model import Generator DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist) Related Apps: - [TADNE Image Viewer](https://huggingface.co./spaces/hysts/TADNE-image-viewer) - [TADNE Image Selector](https://huggingface.co./spaces/hysts/TADNE-image-selector) - [TADNE Interpolation](https://huggingface.co./spaces/hysts/TADNE-interpolation) - [TADNE Image Search with DeepDanbooru](https://huggingface.co./spaces/hysts/TADNE-image-search-with-DeepDanbooru) """ SAMPLE_IMAGE_DIR = "https://huggingface.co./spaces/hysts/TADNE/resolve/main/samples" ARTICLE = f"""## Generated images - size: 512x512 - truncation: 0.7 - seed: 0-99 ![samples]({SAMPLE_IMAGE_DIR}/sample.jpg) """ MAX_SEED = np.iinfo(np.int32).max def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def load_model(device: torch.device) -> nn.Module: model = Generator(512, 1024, 4, channel_multiplier=2) path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt") checkpoint = torch.load(path) model.load_state_dict(checkpoint["g_ema"]) model.eval() model.to(device) model.latent_avg = checkpoint["latent_avg"].to(device) with torch.inference_mode(): z = torch.zeros((1, model.style_dim)).to(device) model([z], truncation=0.7, truncation_latent=model.latent_avg) return model def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(device).float() @torch.inference_mode() def generate_image( seed: int, truncation_psi: float, randomize_noise: bool, model: nn.Module, device: torch.device ) -> np.ndarray: seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = generate_z(model.style_dim, seed, device) out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = load_model(device) fn = functools.partial(generate_image, model=model, device=device) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7) randomize_noise = gr.Checkbox(label="Randomize Noise", value=False) run_button = gr.Button("Run") with gr.Column(): result = gr.Image(label="Output") gr.Markdown(ARTICLE) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=fn, inputs=[seed, psi, randomize_noise], outputs=result, api_name="run", ) demo.queue(max_size=10).launch()