File size: 6,018 Bytes
181c0bd
 
 
 
 
 
 
 
 
 
 
f86bee5
181c0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0540d7
181c0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <script src="https://cdn.tailwindcss.com"></script>
    <!-- polyfill for firefox + import maps -->
    <script src="https://unpkg.com/[email protected]/dist/es-module-shims.js"></script>
    <script type="importmap">
			{
				"imports": {
					"@huggingface/inference": "https://cdn.jsdelivr.net/npm/@huggingface/[email protected]/+esm"
				}
			}
    </script>
</head>
<body>
<form class="w-[90%] mx-auto pt-8" onsubmit="launch(); return false;">
    <h1 class="text-3xl font-bold">
				<span
                        class="bg-clip-text text-transparent bg-gradient-to-r from-pink-500 to-violet-500"
                >
					Document & visual question answering demo with
					<a href="https://github.com/huggingface/huggingface.js">
						<kbd>@huggingface/inference</kbd>
					</a>
				</span>
    </h1>

    <p class="mt-8">
        First, input your token if you have one! Otherwise, you may encounter
        rate limiting. You can create a token for free at
        <a
                target="_blank"
                href="https://huggingface.co./settings/tokens"
                class="underline text-blue-500"
        >hf.co/settings/tokens</a
        >
    </p>

    <input
            type="text"
            id="token"
            class="rounded border-2 border-blue-500 shadow-md px-3 py-2 w-96 mt-6"
            placeholder="token (optional)"
    />

    <p class="mt-8">
        Pick the model type and the model you want to run. Check out models for
        <a
                href="https://huggingface.co./tasks/document-question-answering"
                class="underline text-blue-500"
                target="_blank"
        >
            document</a
        > and
        <a
                href="https://huggingface.co./tasks/visual-question-answering"
                class="underline text-blue-500"
                target="_blank"
        >image</a> question answering.
    </p>

    <div class="space-x-2 flex text-sm mt-8">
        <label>
            <input class="sr-only peer" name="type" type="radio" value="document" onclick="update_model(this.value)" checked />
            <div class="px-3 py-3 rounded-lg shadow-md flex items-center justify-center text-slate-700 bg-gradient-to-r peer-checked:font-semibold peer-checked:from-pink-500 peer-checked:to-violet-500 peer-checked:text-white">
                Document
            </div>
        </label>
        <label>
            <input class="sr-only peer" name="type" type="radio" value="image" onclick="update_model(this.value)" />
            <div class="px-3 py-3 rounded-lg shadow-md flex items-center justify-center text-slate-700 bg-gradient-to-r peer-checked:font-semibold peer-checked:from-pink-500 peer-checked:to-violet-500 peer-checked:text-white">
                Image
            </div>
        </label>
    </div>
    
    <input
            id="model"
            class="rounded border-2 border-blue-500 shadow-md px-3 py-2 w-96 mt-6"
            value="impira/layoutlm-document-qa"
            required
    />

    <p class="mt-8">The input image</p>

    <input type="file" required accept="image/*"
           class="rounded border-blue-500 shadow-md px-3 py-2 w-96 mt-6 block"
           rows="5"
           id="image"
    />

    <p class="mt-8">The question</p>

    <input
            type="text"
            id="question"
            class="rounded border-2 border-blue-500 shadow-md px-3 py-2 w-96 mt-6"
            required
    />

    <button
            id="submit"
            class="my-8 bg-green-500 rounded py-3 px-5 text-white shadow-md disabled:bg-slate-300"
    >
        Run
    </button>

    <p class="text-gray-400 text-sm">Output logs</p>
    <div id="logs" class="bg-gray-100 rounded p-3 mb-8 text-sm">
        Output will be here
    </div>

    <p>Check out the <a class="underline text-blue-500"
                        href="https://huggingface.co./spaces/huggingfacejs/doc-vis-qa/blob/main/index.html"
                        target="_blank">source code</a></p>
</form>

<script type="module">
    import {HfInference} from "@huggingface/inference";

    const default_models = {
        "document": "impira/layoutlm-document-qa",
        "image": "dandelin/vilt-b32-finetuned-vqa",
    };

    let running = false;

    async function launch() {
        if (running) {
            return;
        }
        running = true;
        try {
            const hf = new HfInference(
                document.getElementById("token").value.trim() || undefined
            );
            const model = document.getElementById("model").value.trim();
            const model_type = document.querySelector("[name=type]:checked").value;
            const image = document.getElementById("image").files[0];
            const question = document.getElementById("question").value.trim();
            document.getElementById("logs").textContent = "";

            const method = model_type === "document" ? hf.documentQuestionAnswering : hf.visualQuestionAnswering;
            const {answer, score} = await method({model, inputs: {
                image, question
                }});

            document.getElementById("logs").textContent = answer + ": " + score;
        } catch (err) {
            alert("Error: " + err.message);
        } finally {
            running = false;
        }
    }

    window.launch = launch;

    window.update_model = (model_type) => {
        const model_input = document.getElementById("model");
        const cur_model = model_input.value.trim();
        let new_model = "";
        if (
            model_type === "document" && cur_model === default_models["image"]
            || model_type === "image" && cur_model === default_models["document"]
            || cur_model === ""
        ) {
             new_model = default_models[model_type];
        }
        model_input.value = new_model;
    };
</script>
</body>
</html>