Spaces:
Running
Running
Commit
•
181c0bd
0
Parent(s):
Duplicate from vvmnnnkv/doc-vis-qa
Browse filesCo-authored-by: Vova Manannikov <[email protected]>
- README.md +17 -0
- index.html +175 -0
- index.mjs +616 -0
README.md
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Document and visual question answering
|
3 |
+
emoji: ❓
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: static
|
7 |
+
pinned: false
|
8 |
+
license: mit
|
9 |
+
description: Showcase document & visual question answering using huggingface.js
|
10 |
+
duplicated_from: vvmnnnkv/doc-vis-qa
|
11 |
+
---
|
12 |
+
|
13 |
+
Showcase document & visual question answering using the `@huggingface/inference` JS lib.
|
14 |
+
|
15 |
+
Default models for inference:
|
16 |
+
* Documents: https://huggingface.co/impira/layoutlm-document-qa
|
17 |
+
* Images: https://huggingface.co/dandelin/vilt-b32-finetuned-vqa
|
index.html
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8"/>
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
6 |
+
<script src="https://cdn.tailwindcss.com"></script>
|
7 |
+
<!-- polyfill for firefox + import maps -->
|
8 |
+
<script src="https://unpkg.com/[email protected]/dist/es-module-shims.js"></script>
|
9 |
+
<script type="importmap">
|
10 |
+
{
|
11 |
+
"imports": {
|
12 |
+
"@huggingface/inference": "./index.mjs"
|
13 |
+
}
|
14 |
+
}
|
15 |
+
</script>
|
16 |
+
</head>
|
17 |
+
<body>
|
18 |
+
<form class="w-[90%] mx-auto pt-8" onsubmit="launch(); return false;">
|
19 |
+
<h1 class="text-3xl font-bold">
|
20 |
+
<span
|
21 |
+
class="bg-clip-text text-transparent bg-gradient-to-r from-pink-500 to-violet-500"
|
22 |
+
>
|
23 |
+
Document & visual question answering demo with
|
24 |
+
<a href="https://github.com/huggingface/huggingface.js">
|
25 |
+
<kbd>@huggingface/inference</kbd>
|
26 |
+
</a>
|
27 |
+
</span>
|
28 |
+
</h1>
|
29 |
+
|
30 |
+
<p class="mt-8">
|
31 |
+
First, input your token if you have one! Otherwise, you may encounter
|
32 |
+
rate limiting. You can create a token for free at
|
33 |
+
<a
|
34 |
+
target="_blank"
|
35 |
+
href="https://huggingface.co/settings/tokens"
|
36 |
+
class="underline text-blue-500"
|
37 |
+
>hf.co/settings/tokens</a
|
38 |
+
>
|
39 |
+
</p>
|
40 |
+
|
41 |
+
<input
|
42 |
+
type="text"
|
43 |
+
id="token"
|
44 |
+
class="rounded border-2 border-blue-500 shadow-md px-3 py-2 w-96 mt-6"
|
45 |
+
placeholder="token (optional)"
|
46 |
+
/>
|
47 |
+
|
48 |
+
<p class="mt-8">
|
49 |
+
Pick the model type and the model you want to run. Check out models for
|
50 |
+
<a
|
51 |
+
href="https://huggingface.co/tasks/document-question-answering"
|
52 |
+
class="underline text-blue-500"
|
53 |
+
target="_blank"
|
54 |
+
>
|
55 |
+
document</a
|
56 |
+
> and
|
57 |
+
<a
|
58 |
+
href="https://huggingface.co/tasks/visual-question-answering"
|
59 |
+
class="underline text-blue-500"
|
60 |
+
target="_blank"
|
61 |
+
>image</a> question answering.
|
62 |
+
</p>
|
63 |
+
|
64 |
+
<div class="space-x-2 flex text-sm mt-8">
|
65 |
+
<label>
|
66 |
+
<input class="sr-only peer" name="type" type="radio" value="document" onclick="update_model(this.value)" checked />
|
67 |
+
<div class="px-3 py-3 rounded-lg shadow-md flex items-center justify-center text-slate-700 bg-gradient-to-r peer-checked:font-semibold peer-checked:from-pink-500 peer-checked:to-violet-500 peer-checked:text-white">
|
68 |
+
Document
|
69 |
+
</div>
|
70 |
+
</label>
|
71 |
+
<label>
|
72 |
+
<input class="sr-only peer" name="type" type="radio" value="image" onclick="update_model(this.value)" />
|
73 |
+
<div class="px-3 py-3 rounded-lg shadow-md flex items-center justify-center text-slate-700 bg-gradient-to-r peer-checked:font-semibold peer-checked:from-pink-500 peer-checked:to-violet-500 peer-checked:text-white">
|
74 |
+
Image
|
75 |
+
</div>
|
76 |
+
</label>
|
77 |
+
</div>
|
78 |
+
|
79 |
+
<input
|
80 |
+
id="model"
|
81 |
+
class="rounded border-2 border-blue-500 shadow-md px-3 py-2 w-96 mt-6"
|
82 |
+
value="impira/layoutlm-document-qa"
|
83 |
+
required
|
84 |
+
/>
|
85 |
+
|
86 |
+
<p class="mt-8">The input image</p>
|
87 |
+
|
88 |
+
<input type="file" required accept="image/*"
|
89 |
+
class="rounded border-blue-500 shadow-md px-3 py-2 w-96 mt-6 block"
|
90 |
+
rows="5"
|
91 |
+
id="image"
|
92 |
+
/>
|
93 |
+
|
94 |
+
<p class="mt-8">The question</p>
|
95 |
+
|
96 |
+
<input
|
97 |
+
type="text"
|
98 |
+
id="question"
|
99 |
+
class="rounded border-2 border-blue-500 shadow-md px-3 py-2 w-96 mt-6"
|
100 |
+
required
|
101 |
+
/>
|
102 |
+
|
103 |
+
<button
|
104 |
+
id="submit"
|
105 |
+
class="my-8 bg-green-500 rounded py-3 px-5 text-white shadow-md disabled:bg-slate-300"
|
106 |
+
>
|
107 |
+
Run
|
108 |
+
</button>
|
109 |
+
|
110 |
+
<p class="text-gray-400 text-sm">Output logs</p>
|
111 |
+
<div id="logs" class="bg-gray-100 rounded p-3 mb-8 text-sm">
|
112 |
+
Output will be here
|
113 |
+
</div>
|
114 |
+
|
115 |
+
<p>Check out the <a class="underline text-blue-500"
|
116 |
+
href="#"
|
117 |
+
target="_blank">source code</a></p>
|
118 |
+
</form>
|
119 |
+
|
120 |
+
<script type="module">
|
121 |
+
import {HfInference} from "@huggingface/inference";
|
122 |
+
|
123 |
+
const default_models = {
|
124 |
+
"document": "impira/layoutlm-document-qa",
|
125 |
+
"image": "dandelin/vilt-b32-finetuned-vqa",
|
126 |
+
};
|
127 |
+
|
128 |
+
let running = false;
|
129 |
+
|
130 |
+
async function launch() {
|
131 |
+
if (running) {
|
132 |
+
return;
|
133 |
+
}
|
134 |
+
running = true;
|
135 |
+
try {
|
136 |
+
const hf = new HfInference(
|
137 |
+
document.getElementById("token").value.trim() || undefined
|
138 |
+
);
|
139 |
+
const model = document.getElementById("model").value.trim();
|
140 |
+
const model_type = document.querySelector("[name=type]:checked").value;
|
141 |
+
const image = document.getElementById("image").files[0];
|
142 |
+
const question = document.getElementById("question").value.trim();
|
143 |
+
document.getElementById("logs").textContent = "";
|
144 |
+
|
145 |
+
const method = model_type === "document" ? hf.documentQuestionAnswering : hf.visualQuestionAnswering;
|
146 |
+
const {answer, score} = await method({model, inputs: {
|
147 |
+
image, question
|
148 |
+
}});
|
149 |
+
|
150 |
+
document.getElementById("logs").textContent = answer + ": " + score;
|
151 |
+
} catch (err) {
|
152 |
+
alert("Error: " + err.message);
|
153 |
+
} finally {
|
154 |
+
running = false;
|
155 |
+
}
|
156 |
+
}
|
157 |
+
|
158 |
+
window.launch = launch;
|
159 |
+
|
160 |
+
window.update_model = (model_type) => {
|
161 |
+
const model_input = document.getElementById("model");
|
162 |
+
const cur_model = model_input.value.trim();
|
163 |
+
let new_model = "";
|
164 |
+
if (
|
165 |
+
model_type === "document" && cur_model === default_models["image"]
|
166 |
+
|| model_type === "image" && cur_model === default_models["document"]
|
167 |
+
|| cur_model === ""
|
168 |
+
) {
|
169 |
+
new_model = default_models[model_type];
|
170 |
+
}
|
171 |
+
model_input.value = new_model;
|
172 |
+
};
|
173 |
+
</script>
|
174 |
+
</body>
|
175 |
+
</html>
|
index.mjs
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
var __defProp = Object.defineProperty;
|
2 |
+
var __export = (target, all) => {
|
3 |
+
for (var name in all)
|
4 |
+
__defProp(target, name, { get: all[name], enumerable: true });
|
5 |
+
};
|
6 |
+
|
7 |
+
// src/tasks/index.ts
|
8 |
+
var tasks_exports = {};
|
9 |
+
__export(tasks_exports, {
|
10 |
+
audioClassification: () => audioClassification,
|
11 |
+
automaticSpeechRecognition: () => automaticSpeechRecognition,
|
12 |
+
conversational: () => conversational,
|
13 |
+
documentQuestionAnswering: () => documentQuestionAnswering,
|
14 |
+
featureExtraction: () => featureExtraction,
|
15 |
+
fillMask: () => fillMask,
|
16 |
+
imageClassification: () => imageClassification,
|
17 |
+
imageSegmentation: () => imageSegmentation,
|
18 |
+
imageToText: () => imageToText,
|
19 |
+
objectDetection: () => objectDetection,
|
20 |
+
questionAnswering: () => questionAnswering,
|
21 |
+
request: () => request,
|
22 |
+
sentenceSimilarity: () => sentenceSimilarity,
|
23 |
+
streamingRequest: () => streamingRequest,
|
24 |
+
summarization: () => summarization,
|
25 |
+
tableQuestionAnswering: () => tableQuestionAnswering,
|
26 |
+
textClassification: () => textClassification,
|
27 |
+
textGeneration: () => textGeneration,
|
28 |
+
textGenerationStream: () => textGenerationStream,
|
29 |
+
textToImage: () => textToImage,
|
30 |
+
tokenClassification: () => tokenClassification,
|
31 |
+
translation: () => translation,
|
32 |
+
visualQuestionAnswering: () => visualQuestionAnswering,
|
33 |
+
zeroShotClassification: () => zeroShotClassification
|
34 |
+
});
|
35 |
+
|
36 |
+
// src/lib/makeRequestOptions.ts
|
37 |
+
var HF_INFERENCE_API_BASE_URL = "https://api-inference.huggingface.co/models/";
|
38 |
+
function makeRequestOptions(args, options) {
|
39 |
+
const { model, accessToken, ...otherArgs } = args;
|
40 |
+
const headers = {};
|
41 |
+
if (accessToken) {
|
42 |
+
headers["Authorization"] = `Bearer ${accessToken}`;
|
43 |
+
}
|
44 |
+
const binary = "data" in args && !!args.data;
|
45 |
+
if (!binary) {
|
46 |
+
headers["Content-Type"] = "application/json";
|
47 |
+
} else {
|
48 |
+
if (options?.wait_for_model) {
|
49 |
+
headers["X-Wait-For-Model"] = "true";
|
50 |
+
}
|
51 |
+
if (options?.use_cache === false) {
|
52 |
+
headers["X-Use-Cache"] = "false";
|
53 |
+
}
|
54 |
+
if (options?.dont_load_model) {
|
55 |
+
headers["X-Load-Model"] = "0";
|
56 |
+
}
|
57 |
+
}
|
58 |
+
const url = /^http(s?):/.test(model) || model.startsWith("/") ? model : `${HF_INFERENCE_API_BASE_URL}${model}`;
|
59 |
+
const info = {
|
60 |
+
headers,
|
61 |
+
method: "POST",
|
62 |
+
body: binary ? args.data : JSON.stringify({
|
63 |
+
...otherArgs,
|
64 |
+
options
|
65 |
+
}),
|
66 |
+
credentials: options?.includeCredentials ? "include" : "same-origin"
|
67 |
+
};
|
68 |
+
return { url, info };
|
69 |
+
}
|
70 |
+
|
71 |
+
// src/tasks/custom/request.ts
|
72 |
+
async function request(args, options) {
|
73 |
+
const { url, info } = makeRequestOptions(args, options);
|
74 |
+
const response = await fetch(url, info);
|
75 |
+
if (options?.retry_on_error !== false && response.status === 503 && !options?.wait_for_model) {
|
76 |
+
return request(args, {
|
77 |
+
...options,
|
78 |
+
wait_for_model: true
|
79 |
+
});
|
80 |
+
}
|
81 |
+
if (!response.ok) {
|
82 |
+
if (response.headers.get("Content-Type")?.startsWith("application/json")) {
|
83 |
+
const output = await response.json();
|
84 |
+
if (output.error) {
|
85 |
+
throw new Error(output.error);
|
86 |
+
}
|
87 |
+
}
|
88 |
+
throw new Error("An error occurred while fetching the blob");
|
89 |
+
}
|
90 |
+
if (response.headers.get("Content-Type")?.startsWith("application/json")) {
|
91 |
+
return await response.json();
|
92 |
+
}
|
93 |
+
return await response.blob();
|
94 |
+
}
|
95 |
+
|
96 |
+
// src/vendor/fetch-event-source/parse.ts
|
97 |
+
function getLines(onLine) {
|
98 |
+
let buffer;
|
99 |
+
let position;
|
100 |
+
let fieldLength;
|
101 |
+
let discardTrailingNewline = false;
|
102 |
+
return function onChunk(arr) {
|
103 |
+
if (buffer === void 0) {
|
104 |
+
buffer = arr;
|
105 |
+
position = 0;
|
106 |
+
fieldLength = -1;
|
107 |
+
} else {
|
108 |
+
buffer = concat(buffer, arr);
|
109 |
+
}
|
110 |
+
const bufLength = buffer.length;
|
111 |
+
let lineStart = 0;
|
112 |
+
while (position < bufLength) {
|
113 |
+
if (discardTrailingNewline) {
|
114 |
+
if (buffer[position] === 10 /* NewLine */) {
|
115 |
+
lineStart = ++position;
|
116 |
+
}
|
117 |
+
discardTrailingNewline = false;
|
118 |
+
}
|
119 |
+
let lineEnd = -1;
|
120 |
+
for (; position < bufLength && lineEnd === -1; ++position) {
|
121 |
+
switch (buffer[position]) {
|
122 |
+
case 58 /* Colon */:
|
123 |
+
if (fieldLength === -1) {
|
124 |
+
fieldLength = position - lineStart;
|
125 |
+
}
|
126 |
+
break;
|
127 |
+
case 13 /* CarriageReturn */:
|
128 |
+
discardTrailingNewline = true;
|
129 |
+
case 10 /* NewLine */:
|
130 |
+
lineEnd = position;
|
131 |
+
break;
|
132 |
+
}
|
133 |
+
}
|
134 |
+
if (lineEnd === -1) {
|
135 |
+
break;
|
136 |
+
}
|
137 |
+
onLine(buffer.subarray(lineStart, lineEnd), fieldLength);
|
138 |
+
lineStart = position;
|
139 |
+
fieldLength = -1;
|
140 |
+
}
|
141 |
+
if (lineStart === bufLength) {
|
142 |
+
buffer = void 0;
|
143 |
+
} else if (lineStart !== 0) {
|
144 |
+
buffer = buffer.subarray(lineStart);
|
145 |
+
position -= lineStart;
|
146 |
+
}
|
147 |
+
};
|
148 |
+
}
|
149 |
+
function getMessages(onId, onRetry, onMessage) {
|
150 |
+
let message = newMessage();
|
151 |
+
const decoder = new TextDecoder();
|
152 |
+
return function onLine(line, fieldLength) {
|
153 |
+
if (line.length === 0) {
|
154 |
+
onMessage?.(message);
|
155 |
+
message = newMessage();
|
156 |
+
} else if (fieldLength > 0) {
|
157 |
+
const field = decoder.decode(line.subarray(0, fieldLength));
|
158 |
+
const valueOffset = fieldLength + (line[fieldLength + 1] === 32 /* Space */ ? 2 : 1);
|
159 |
+
const value = decoder.decode(line.subarray(valueOffset));
|
160 |
+
switch (field) {
|
161 |
+
case "data":
|
162 |
+
message.data = message.data ? message.data + "\n" + value : value;
|
163 |
+
break;
|
164 |
+
case "event":
|
165 |
+
message.event = value;
|
166 |
+
break;
|
167 |
+
case "id":
|
168 |
+
onId(message.id = value);
|
169 |
+
break;
|
170 |
+
case "retry":
|
171 |
+
const retry = parseInt(value, 10);
|
172 |
+
if (!isNaN(retry)) {
|
173 |
+
onRetry(message.retry = retry);
|
174 |
+
}
|
175 |
+
break;
|
176 |
+
}
|
177 |
+
}
|
178 |
+
};
|
179 |
+
}
|
180 |
+
function concat(a, b) {
|
181 |
+
const res = new Uint8Array(a.length + b.length);
|
182 |
+
res.set(a);
|
183 |
+
res.set(b, a.length);
|
184 |
+
return res;
|
185 |
+
}
|
186 |
+
function newMessage() {
|
187 |
+
return {
|
188 |
+
data: "",
|
189 |
+
event: "",
|
190 |
+
id: "",
|
191 |
+
retry: void 0
|
192 |
+
};
|
193 |
+
}
|
194 |
+
|
195 |
+
// src/tasks/custom/streamingRequest.ts
|
196 |
+
async function* streamingRequest(args, options) {
|
197 |
+
const { url, info } = makeRequestOptions({ ...args, stream: true }, options);
|
198 |
+
const response = await fetch(url, info);
|
199 |
+
if (options?.retry_on_error !== false && response.status === 503 && !options?.wait_for_model) {
|
200 |
+
return streamingRequest(args, {
|
201 |
+
...options,
|
202 |
+
wait_for_model: true
|
203 |
+
});
|
204 |
+
}
|
205 |
+
if (!response.ok) {
|
206 |
+
if (response.headers.get("Content-Type")?.startsWith("application/json")) {
|
207 |
+
const output = await response.json();
|
208 |
+
if (output.error) {
|
209 |
+
throw new Error(output.error);
|
210 |
+
}
|
211 |
+
}
|
212 |
+
throw new Error(`Server response contains error: ${response.status}`);
|
213 |
+
}
|
214 |
+
if (response.headers.get("content-type") !== "text/event-stream") {
|
215 |
+
throw new Error(
|
216 |
+
`Server does not support event stream content type, it returned ` + response.headers.get("content-type")
|
217 |
+
);
|
218 |
+
}
|
219 |
+
if (!response.body) {
|
220 |
+
return;
|
221 |
+
}
|
222 |
+
const reader = response.body.getReader();
|
223 |
+
let events = [];
|
224 |
+
const onEvent = (event) => {
|
225 |
+
events.push(event);
|
226 |
+
};
|
227 |
+
const onChunk = getLines(
|
228 |
+
getMessages(
|
229 |
+
() => {
|
230 |
+
},
|
231 |
+
() => {
|
232 |
+
},
|
233 |
+
onEvent
|
234 |
+
)
|
235 |
+
);
|
236 |
+
try {
|
237 |
+
while (true) {
|
238 |
+
const { done, value } = await reader.read();
|
239 |
+
if (done)
|
240 |
+
return;
|
241 |
+
onChunk(value);
|
242 |
+
for (const event of events) {
|
243 |
+
if (event.data.length > 0) {
|
244 |
+
yield JSON.parse(event.data);
|
245 |
+
}
|
246 |
+
}
|
247 |
+
events = [];
|
248 |
+
}
|
249 |
+
} finally {
|
250 |
+
reader.releaseLock();
|
251 |
+
}
|
252 |
+
}
|
253 |
+
|
254 |
+
// src/lib/InferenceOutputError.ts
|
255 |
+
var InferenceOutputError = class extends TypeError {
|
256 |
+
constructor(message) {
|
257 |
+
super(
|
258 |
+
`Invalid inference output: ${message}. Use the 'request' method with the same parameters to do a custom call with no type checking.`
|
259 |
+
);
|
260 |
+
this.name = "InferenceOutputError";
|
261 |
+
}
|
262 |
+
};
|
263 |
+
|
264 |
+
// src/tasks/audio/audioClassification.ts
|
265 |
+
async function audioClassification(args, options) {
|
266 |
+
const res = await request(args, options);
|
267 |
+
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x.label === "string" && typeof x.score === "number");
|
268 |
+
if (!isValidOutput) {
|
269 |
+
throw new InferenceOutputError("Expected Array<{label: string, score: number}>");
|
270 |
+
}
|
271 |
+
return res;
|
272 |
+
}
|
273 |
+
|
274 |
+
// src/tasks/audio/automaticSpeechRecognition.ts
|
275 |
+
async function automaticSpeechRecognition(args, options) {
|
276 |
+
const res = await request(args, options);
|
277 |
+
const isValidOutput = typeof res?.text === "string";
|
278 |
+
if (!isValidOutput) {
|
279 |
+
throw new InferenceOutputError("Expected {text: string}");
|
280 |
+
}
|
281 |
+
return res;
|
282 |
+
}
|
283 |
+
|
284 |
+
// src/tasks/cv/imageClassification.ts
|
285 |
+
async function imageClassification(args, options) {
|
286 |
+
const res = await request(args, options);
|
287 |
+
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x.label === "string" && typeof x.score === "number");
|
288 |
+
if (!isValidOutput) {
|
289 |
+
throw new InferenceOutputError("Expected Array<{label: string, score: number}>");
|
290 |
+
}
|
291 |
+
return res;
|
292 |
+
}
|
293 |
+
|
294 |
+
// src/tasks/cv/imageSegmentation.ts
|
295 |
+
async function imageSegmentation(args, options) {
|
296 |
+
const res = await request(args, options);
|
297 |
+
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x.label === "string" && typeof x.mask === "string" && typeof x.score === "number");
|
298 |
+
if (!isValidOutput) {
|
299 |
+
throw new InferenceOutputError("Expected Array<{label: string, mask: string, score: number}>");
|
300 |
+
}
|
301 |
+
return res;
|
302 |
+
}
|
303 |
+
|
304 |
+
// src/tasks/cv/imageToText.ts
|
305 |
+
async function imageToText(args, options) {
|
306 |
+
const res = (await request(args, options))?.[0];
|
307 |
+
if (typeof res?.generated_text !== "string") {
|
308 |
+
throw new InferenceOutputError("Expected {generated_text: string}");
|
309 |
+
}
|
310 |
+
return res;
|
311 |
+
}
|
312 |
+
|
313 |
+
// src/tasks/cv/objectDetection.ts
|
314 |
+
async function objectDetection(args, options) {
|
315 |
+
const res = await request(args, options);
|
316 |
+
const isValidOutput = Array.isArray(res) && res.every(
|
317 |
+
(x) => typeof x.label === "string" && typeof x.score === "number" && typeof x.box.xmin === "number" && typeof x.box.ymin === "number" && typeof x.box.xmax === "number" && typeof x.box.ymax === "number"
|
318 |
+
);
|
319 |
+
if (!isValidOutput) {
|
320 |
+
throw new InferenceOutputError(
|
321 |
+
"Expected Array<{label:string; score:number; box:{xmin:number; ymin:number; xmax:number; ymax:number}}>"
|
322 |
+
);
|
323 |
+
}
|
324 |
+
return res;
|
325 |
+
}
|
326 |
+
|
327 |
+
// src/tasks/cv/textToImage.ts
|
328 |
+
async function textToImage(args, options) {
|
329 |
+
const res = await request(args, options);
|
330 |
+
const isValidOutput = res && res instanceof Blob;
|
331 |
+
if (!isValidOutput) {
|
332 |
+
throw new InferenceOutputError("Expected Blob");
|
333 |
+
}
|
334 |
+
return res;
|
335 |
+
}
|
336 |
+
|
337 |
+
// src/tasks/nlp/conversational.ts
|
338 |
+
async function conversational(args, options) {
|
339 |
+
const res = await request(args, options);
|
340 |
+
const isValidOutput = Array.isArray(res.conversation.generated_responses) && res.conversation.generated_responses.every((x) => typeof x === "string") && Array.isArray(res.conversation.past_user_inputs) && res.conversation.past_user_inputs.every((x) => typeof x === "string") && typeof res.generated_text === "string" && Array.isArray(res.warnings) && res.warnings.every((x) => typeof x === "string");
|
341 |
+
if (!isValidOutput) {
|
342 |
+
throw new InferenceOutputError(
|
343 |
+
"Expected {conversation: {generated_responses: string[], past_user_inputs: string[]}, generated_text: string, warnings: string[]}"
|
344 |
+
);
|
345 |
+
}
|
346 |
+
return res;
|
347 |
+
}
|
348 |
+
|
349 |
+
// src/tasks/nlp/featureExtraction.ts
|
350 |
+
async function featureExtraction(args, options) {
|
351 |
+
const res = await request(args, options);
|
352 |
+
let isValidOutput = true;
|
353 |
+
if (Array.isArray(res)) {
|
354 |
+
for (const e of res) {
|
355 |
+
if (Array.isArray(e)) {
|
356 |
+
isValidOutput = e.every((x) => typeof x === "number");
|
357 |
+
if (!isValidOutput) {
|
358 |
+
break;
|
359 |
+
}
|
360 |
+
} else if (typeof e !== "number") {
|
361 |
+
isValidOutput = false;
|
362 |
+
break;
|
363 |
+
}
|
364 |
+
}
|
365 |
+
} else {
|
366 |
+
isValidOutput = false;
|
367 |
+
}
|
368 |
+
if (!isValidOutput) {
|
369 |
+
throw new InferenceOutputError("Expected Array<number[] | number>");
|
370 |
+
}
|
371 |
+
return res;
|
372 |
+
}
|
373 |
+
|
374 |
+
// src/tasks/nlp/fillMask.ts
|
375 |
+
async function fillMask(args, options) {
|
376 |
+
const res = await request(args, options);
|
377 |
+
const isValidOutput = Array.isArray(res) && res.every(
|
378 |
+
(x) => typeof x.score === "number" && typeof x.sequence === "string" && typeof x.token === "number" && typeof x.token_str === "string"
|
379 |
+
);
|
380 |
+
if (!isValidOutput) {
|
381 |
+
throw new InferenceOutputError(
|
382 |
+
"Expected Array<{score: number, sequence: string, token: number, token_str: string}>"
|
383 |
+
);
|
384 |
+
}
|
385 |
+
return res;
|
386 |
+
}
|
387 |
+
|
388 |
+
// src/tasks/nlp/questionAnswering.ts
|
389 |
+
async function questionAnswering(args, options) {
|
390 |
+
const res = await request(args, options);
|
391 |
+
const isValidOutput = typeof res?.answer === "string" && typeof res.end === "number" && typeof res.score === "number" && typeof res.start === "number";
|
392 |
+
if (!isValidOutput) {
|
393 |
+
throw new InferenceOutputError("Expected {answer: string, end: number, score: number, start: number}");
|
394 |
+
}
|
395 |
+
return res;
|
396 |
+
}
|
397 |
+
|
398 |
+
// src/tasks/nlp/sentenceSimilarity.ts
|
399 |
+
async function sentenceSimilarity(args, options) {
|
400 |
+
const res = await request(args, options);
|
401 |
+
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x === "number");
|
402 |
+
if (!isValidOutput) {
|
403 |
+
throw new InferenceOutputError("Expected number[]");
|
404 |
+
}
|
405 |
+
return res;
|
406 |
+
}
|
407 |
+
|
408 |
+
// src/tasks/nlp/summarization.ts
|
409 |
+
async function summarization(args, options) {
|
410 |
+
const res = await request(args, options);
|
411 |
+
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x?.summary_text === "string");
|
412 |
+
if (!isValidOutput) {
|
413 |
+
throw new InferenceOutputError("Expected Array<{summary_text: string}>");
|
414 |
+
}
|
415 |
+
return res?.[0];
|
416 |
+
}
|
417 |
+
|
418 |
+
// src/tasks/nlp/tableQuestionAnswering.ts
|
419 |
+
async function tableQuestionAnswering(args, options) {
|
420 |
+
const res = await request(args, options);
|
421 |
+
const isValidOutput = typeof res?.aggregator === "string" && typeof res.answer === "string" && Array.isArray(res.cells) && res.cells.every((x) => typeof x === "string") && Array.isArray(res.coordinates) && res.coordinates.every((coord) => Array.isArray(coord) && coord.every((x) => typeof x === "number"));
|
422 |
+
if (!isValidOutput) {
|
423 |
+
throw new InferenceOutputError(
|
424 |
+
"Expected {aggregator: string, answer: string, cells: string[], coordinates: number[][]}"
|
425 |
+
);
|
426 |
+
}
|
427 |
+
return res;
|
428 |
+
}
|
429 |
+
|
430 |
+
// src/tasks/nlp/textClassification.ts
|
431 |
+
async function textClassification(args, options) {
|
432 |
+
const res = (await request(args, options))?.[0];
|
433 |
+
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x?.label === "string" && typeof x.score === "number");
|
434 |
+
if (!isValidOutput) {
|
435 |
+
throw new InferenceOutputError("Expected Array<{label: string, score: number}>");
|
436 |
+
}
|
437 |
+
return res;
|
438 |
+
}
|
439 |
+
|
440 |
+
// src/tasks/nlp/textGeneration.ts
|
441 |
+
async function textGeneration(args, options) {
|
442 |
+
const res = await request(args, options);
|
443 |
+
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x?.generated_text === "string");
|
444 |
+
if (!isValidOutput) {
|
445 |
+
throw new InferenceOutputError("Expected Array<{generated_text: string}>");
|
446 |
+
}
|
447 |
+
return res?.[0];
|
448 |
+
}
|
449 |
+
|
450 |
+
// src/tasks/nlp/textGenerationStream.ts
|
451 |
+
async function* textGenerationStream(args, options) {
|
452 |
+
yield* streamingRequest(args, options);
|
453 |
+
}
|
454 |
+
|
455 |
+
// src/utils/toArray.ts
|
456 |
+
function toArray(obj) {
|
457 |
+
if (Array.isArray(obj)) {
|
458 |
+
return obj;
|
459 |
+
}
|
460 |
+
return [obj];
|
461 |
+
}
|
462 |
+
|
463 |
+
// src/tasks/nlp/tokenClassification.ts
|
464 |
+
async function tokenClassification(args, options) {
|
465 |
+
const res = toArray(await request(args, options));
|
466 |
+
const isValidOutput = Array.isArray(res) && res.every(
|
467 |
+
(x) => typeof x.end === "number" && typeof x.entity_group === "string" && typeof x.score === "number" && typeof x.start === "number" && typeof x.word === "string"
|
468 |
+
);
|
469 |
+
if (!isValidOutput) {
|
470 |
+
throw new InferenceOutputError(
|
471 |
+
"Expected Array<{end: number, entity_group: string, score: number, start: number, word: string}>"
|
472 |
+
);
|
473 |
+
}
|
474 |
+
return res;
|
475 |
+
}
|
476 |
+
|
477 |
+
// src/tasks/nlp/translation.ts
|
478 |
+
async function translation(args, options) {
|
479 |
+
const res = await request(args, options);
|
480 |
+
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x?.translation_text === "string");
|
481 |
+
if (!isValidOutput) {
|
482 |
+
throw new InferenceOutputError("Expected type Array<{translation_text: string}>");
|
483 |
+
}
|
484 |
+
return res?.[0];
|
485 |
+
}
|
486 |
+
|
487 |
+
// src/tasks/nlp/zeroShotClassification.ts
|
488 |
+
async function zeroShotClassification(args, options) {
|
489 |
+
const res = toArray(
|
490 |
+
await request(args, options)
|
491 |
+
);
|
492 |
+
const isValidOutput = Array.isArray(res) && res.every(
|
493 |
+
(x) => Array.isArray(x.labels) && x.labels.every((_label) => typeof _label === "string") && Array.isArray(x.scores) && x.scores.every((_score) => typeof _score === "number") && typeof x.sequence === "string"
|
494 |
+
);
|
495 |
+
if (!isValidOutput) {
|
496 |
+
throw new InferenceOutputError("Expected Array<{labels: string[], scores: number[], sequence: string}>");
|
497 |
+
}
|
498 |
+
return res;
|
499 |
+
}
|
500 |
+
|
501 |
+
// ../shared/src/base64FromBytes.ts
|
502 |
+
function base64FromBytes(arr) {
|
503 |
+
if (globalThis.Buffer) {
|
504 |
+
return globalThis.Buffer.from(arr).toString("base64");
|
505 |
+
} else {
|
506 |
+
const bin = [];
|
507 |
+
arr.forEach((byte) => {
|
508 |
+
bin.push(String.fromCharCode(byte));
|
509 |
+
});
|
510 |
+
return globalThis.btoa(bin.join(""));
|
511 |
+
}
|
512 |
+
}
|
513 |
+
|
514 |
+
// src/tasks/multimodal/documentQuestionAnswering.ts
|
515 |
+
async function documentQuestionAnswering(args, options) {
|
516 |
+
const reqArgs = {
|
517 |
+
...args,
|
518 |
+
inputs: {
|
519 |
+
question: args.inputs.question,
|
520 |
+
// convert Blob to base64
|
521 |
+
image: base64FromBytes(new Uint8Array(await args.inputs.image.arrayBuffer()))
|
522 |
+
}
|
523 |
+
};
|
524 |
+
const res = (await request(reqArgs, options))?.[0];
|
525 |
+
const isValidOutput = typeof res?.answer === "string" && typeof res.end === "number" && typeof res.score === "number" && typeof res.start === "number";
|
526 |
+
if (!isValidOutput) {
|
527 |
+
throw new InferenceOutputError("Expected Array<{answer: string, end: number, score: number, start: number}>");
|
528 |
+
}
|
529 |
+
return res;
|
530 |
+
}
|
531 |
+
|
532 |
+
// src/tasks/multimodal/visualQuestionAnswering.ts
|
533 |
+
async function visualQuestionAnswering(args, options) {
|
534 |
+
const reqArgs = {
|
535 |
+
...args,
|
536 |
+
inputs: {
|
537 |
+
question: args.inputs.question,
|
538 |
+
// convert Blob to base64
|
539 |
+
image: base64FromBytes(new Uint8Array(await args.inputs.image.arrayBuffer()))
|
540 |
+
}
|
541 |
+
};
|
542 |
+
const res = (await request(reqArgs, options))?.[0];
|
543 |
+
const isValidOutput = typeof res?.answer === "string" && typeof res.score === "number";
|
544 |
+
if (!isValidOutput) {
|
545 |
+
throw new InferenceOutputError("Expected Array<{answer: string, score: number}>");
|
546 |
+
}
|
547 |
+
return res;
|
548 |
+
}
|
549 |
+
|
550 |
+
// src/HfInference.ts
|
551 |
+
var HfInference = class {
|
552 |
+
accessToken;
|
553 |
+
defaultOptions;
|
554 |
+
constructor(accessToken = "", defaultOptions = {}) {
|
555 |
+
this.accessToken = accessToken;
|
556 |
+
this.defaultOptions = defaultOptions;
|
557 |
+
for (const [name, fn] of Object.entries(tasks_exports)) {
|
558 |
+
Object.defineProperty(this, name, {
|
559 |
+
enumerable: false,
|
560 |
+
value: (params, options) => (
|
561 |
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
562 |
+
fn({ ...params, accessToken }, { ...defaultOptions, ...options })
|
563 |
+
)
|
564 |
+
});
|
565 |
+
}
|
566 |
+
}
|
567 |
+
/**
|
568 |
+
* Returns copy of HfInference tied to a specified endpoint.
|
569 |
+
*/
|
570 |
+
endpoint(endpointUrl) {
|
571 |
+
return new HfInferenceEndpoint(endpointUrl, this.accessToken, this.defaultOptions);
|
572 |
+
}
|
573 |
+
};
|
574 |
+
var HfInferenceEndpoint = class {
|
575 |
+
constructor(endpointUrl, accessToken = "", defaultOptions = {}) {
|
576 |
+
accessToken;
|
577 |
+
defaultOptions;
|
578 |
+
for (const [name, fn] of Object.entries(tasks_exports)) {
|
579 |
+
Object.defineProperty(this, name, {
|
580 |
+
enumerable: false,
|
581 |
+
value: (params, options) => (
|
582 |
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
583 |
+
fn({ ...params, accessToken, model: endpointUrl }, { ...defaultOptions, ...options })
|
584 |
+
)
|
585 |
+
});
|
586 |
+
}
|
587 |
+
}
|
588 |
+
};
|
589 |
+
export {
|
590 |
+
HfInference,
|
591 |
+
HfInferenceEndpoint,
|
592 |
+
audioClassification,
|
593 |
+
automaticSpeechRecognition,
|
594 |
+
conversational,
|
595 |
+
documentQuestionAnswering,
|
596 |
+
featureExtraction,
|
597 |
+
fillMask,
|
598 |
+
imageClassification,
|
599 |
+
imageSegmentation,
|
600 |
+
imageToText,
|
601 |
+
objectDetection,
|
602 |
+
questionAnswering,
|
603 |
+
request,
|
604 |
+
sentenceSimilarity,
|
605 |
+
streamingRequest,
|
606 |
+
summarization,
|
607 |
+
tableQuestionAnswering,
|
608 |
+
textClassification,
|
609 |
+
textGeneration,
|
610 |
+
textGenerationStream,
|
611 |
+
textToImage,
|
612 |
+
tokenClassification,
|
613 |
+
translation,
|
614 |
+
visualQuestionAnswering,
|
615 |
+
zeroShotClassification
|
616 |
+
};
|