update_new
#2
by
wu981526092
- opened
- .env +0 -2
- .gitignore +0 -3
- .idea/.gitignore +0 -3
- .idea/LLM-Open-Generation-Bias.iml +0 -10
- .idea/inspectionProfiles/profiles_settings.xml +0 -6
- .idea/misc.xml +0 -4
- .idea/modules.xml +0 -8
- .idea/vcs.xml +0 -6
- new +1 -30
- pages/2_new_Demo_1.py +0 -217
- requirements.txt +1 -2
- utils/__pycache__/__init__.cpython-311.pyc +0 -0
- utils/__pycache__/metric.cpython-311.pyc +0 -0
- utils/__pycache__/model.cpython-311.pyc +0 -0
- utils/metric.py +9 -23
.env
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
# .env
|
2 |
-
PASSWORD=88888888
|
|
|
|
|
|
.gitignore
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
.gitignore
|
2 |
-
.env
|
3 |
-
test.py
|
|
|
|
|
|
|
|
.idea/.gitignore
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
# Default ignored files
|
2 |
-
/shelf/
|
3 |
-
/workspace.xml
|
|
|
|
|
|
|
|
.idea/LLM-Open-Generation-Bias.iml
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<module type="PYTHON_MODULE" version="4">
|
3 |
-
<component name="NewModuleRootManager">
|
4 |
-
<content url="file://$MODULE_DIR$">
|
5 |
-
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
6 |
-
</content>
|
7 |
-
<orderEntry type="inheritedJdk" />
|
8 |
-
<orderEntry type="sourceFolder" forTests="false" />
|
9 |
-
</component>
|
10 |
-
</module>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.idea/inspectionProfiles/profiles_settings.xml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
<component name="InspectionProjectProfileManager">
|
2 |
-
<settings>
|
3 |
-
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
-
<version value="1.0" />
|
5 |
-
</settings>
|
6 |
-
</component>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.idea/misc.xml
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<project version="4">
|
3 |
-
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (LLM-Open-Generation-Bias)" project-jdk-type="Python SDK" />
|
4 |
-
</project>
|
|
|
|
|
|
|
|
|
|
.idea/modules.xml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<project version="4">
|
3 |
-
<component name="ProjectModuleManager">
|
4 |
-
<modules>
|
5 |
-
<module fileurl="file://$PROJECT_DIR$/.idea/LLM-Open-Generation-Bias.iml" filepath="$PROJECT_DIR$/.idea/LLM-Open-Generation-Bias.iml" />
|
6 |
-
</modules>
|
7 |
-
</component>
|
8 |
-
</project>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.idea/vcs.xml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<project version="4">
|
3 |
-
<component name="VcsDirectoryMappings">
|
4 |
-
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
5 |
-
</component>
|
6 |
-
</project>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new
CHANGED
@@ -1,30 +1 @@
|
|
1 |
-
|
2 |
-
}
|
3 |
-
else {
|
4 |
-
$newfile_nameerror = "";
|
5 |
-
}
|
6 |
-
}
|
7 |
-
else {
|
8 |
-
$newfile_nameerror = "";
|
9 |
-
}
|
10 |
-
|
11 |
-
if (isset($_POST['newfile_content'])) {
|
12 |
-
$newfile_content = $_POST['newfile_content'];
|
13 |
-
if (empty($newfile_content)) {
|
14 |
-
$newfile_contenterror = "Please enter a valid file content";
|
15 |
-
}
|
16 |
-
else {
|
17 |
-
$newfile_contenterror = "";
|
18 |
-
}
|
19 |
-
}
|
20 |
-
else {
|
21 |
-
$newfile_contenterror = "";
|
22 |
-
}
|
23 |
-
|
24 |
-
if ($newfile_nameerror == "" && $newfile_contenterror == "") {
|
25 |
-
$newfile = fopen($newfile_name, "w");
|
26 |
-
fwrite($newfile, $newfile_content);
|
27 |
-
fclose($newfile);
|
28 |
-
header("Location: index.php");
|
29 |
-
}
|
30 |
-
}
|
|
|
1 |
+
newfile_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/2_new_Demo_1.py
DELETED
@@ -1,217 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
from datasets import load_dataset, Dataset
|
4 |
-
from random import sample
|
5 |
-
from utils.metric import Regard
|
6 |
-
from utils.model import gpt2
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import os
|
9 |
-
|
10 |
-
# Set up the Streamlit interface
|
11 |
-
st.title('Gender Bias Analysis in Text Generation')
|
12 |
-
|
13 |
-
|
14 |
-
def check_password():
|
15 |
-
def password_entered():
|
16 |
-
if password_input == os.getenv('PASSWORD'):
|
17 |
-
# if password_input == " ":
|
18 |
-
st.session_state['password_correct'] = True
|
19 |
-
else:
|
20 |
-
st.error("Incorrect Password, please try again.")
|
21 |
-
|
22 |
-
password_input = st.text_input("Enter Password:", type="password")
|
23 |
-
submit_button = st.button("Submit", on_click=password_entered)
|
24 |
-
|
25 |
-
if submit_button and not st.session_state.get('password_correct', False):
|
26 |
-
st.error("Please enter a valid password to access the demo.")
|
27 |
-
|
28 |
-
|
29 |
-
if not st.session_state.get('password_correct', False):
|
30 |
-
check_password()
|
31 |
-
else:
|
32 |
-
st.sidebar.success("Password Verified. Proceed with the demo.")
|
33 |
-
|
34 |
-
if 'data_size' not in st.session_state:
|
35 |
-
st.session_state['data_size'] = 10
|
36 |
-
if 'bold' not in st.session_state:
|
37 |
-
bold = pd.DataFrame({})
|
38 |
-
bold_raw = pd.DataFrame(load_dataset("AlexaAI/bold", split="train"))
|
39 |
-
for index, row in bold_raw.iterrows():
|
40 |
-
bold_raw_prompts = list(row['prompts'])
|
41 |
-
bold_raw_wikipedia = list(row['wikipedia'])
|
42 |
-
bold_expansion = zip(bold_raw_prompts, bold_raw_wikipedia)
|
43 |
-
for bold_prompt, bold_wikipedia in bold_expansion:
|
44 |
-
bold = bold._append(
|
45 |
-
{'domain': row['domain'], 'name': row['name'], 'category': row['category'], 'prompts': bold_prompt,
|
46 |
-
'wikipedia': bold_wikipedia}, ignore_index=True)
|
47 |
-
st.session_state['bold'] = Dataset.from_pandas(bold)
|
48 |
-
if 'female_bold' not in st.session_state:
|
49 |
-
st.session_state['female_bold'] = []
|
50 |
-
if 'male_bold' not in st.session_state:
|
51 |
-
st.session_state['male_bold'] = []
|
52 |
-
|
53 |
-
st.subheader('Step 1: Set Data Size')
|
54 |
-
data_size = st.slider('Select number of samples per category:', min_value=1, max_value=50,
|
55 |
-
value=st.session_state['data_size'])
|
56 |
-
st.session_state['data_size'] = data_size
|
57 |
-
|
58 |
-
if st.button('Show Data'):
|
59 |
-
st.session_state['female_bold'] = sample(
|
60 |
-
[p for p in st.session_state['bold'] if p['category'] == 'American_actresses'], data_size)
|
61 |
-
st.session_state['male_bold'] = sample(
|
62 |
-
[p for p in st.session_state['bold'] if p['category'] == 'American_actors'], data_size)
|
63 |
-
|
64 |
-
st.write(f'Sampled {data_size} female and male American actors.')
|
65 |
-
st.write('**Female Samples:**', pd.DataFrame(st.session_state['female_bold']))
|
66 |
-
st.write('**Male Samples:**', pd.DataFrame(st.session_state['male_bold']))
|
67 |
-
|
68 |
-
if st.session_state['female_bold'] and st.session_state['male_bold']:
|
69 |
-
st.subheader('Step 2: Generate Text')
|
70 |
-
|
71 |
-
if st.button('Generate Text'):
|
72 |
-
GPT2 = gpt2()
|
73 |
-
st.session_state['male_prompts'] = [p['prompts'] for p in st.session_state['male_bold']]
|
74 |
-
st.session_state['female_prompts'] = [p['prompts'] for p in st.session_state['female_bold']]
|
75 |
-
st.session_state['male_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
|
76 |
-
st.session_state['male_bold']]
|
77 |
-
st.session_state['female_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
|
78 |
-
st.session_state['female_bold']]
|
79 |
-
|
80 |
-
progress_bar = st.progress(0)
|
81 |
-
|
82 |
-
st.write('Generating text for male prompts...')
|
83 |
-
male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50,
|
84 |
-
do_sample=False, truncation=True)
|
85 |
-
st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
86 |
-
zip(male_generation, st.session_state['male_prompts'])]
|
87 |
-
|
88 |
-
progress_bar.progress(50)
|
89 |
-
|
90 |
-
st.write('Generating text for female prompts...')
|
91 |
-
female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256,
|
92 |
-
max_length=50, do_sample=False, truncation=True)
|
93 |
-
st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
94 |
-
zip(female_generation, st.session_state['female_prompts'])]
|
95 |
-
|
96 |
-
progress_bar.progress(100)
|
97 |
-
st.write('Text generation completed.')
|
98 |
-
|
99 |
-
if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'):
|
100 |
-
st.subheader('Step 3: Sample Generated Texts')
|
101 |
-
|
102 |
-
st.write("Male Data Samples:")
|
103 |
-
samples_df = pd.DataFrame({
|
104 |
-
'Male Prompt': st.session_state['male_prompts'],
|
105 |
-
'Male Continuation': st.session_state['male_continuations'],
|
106 |
-
'Male Wiki Continuation': st.session_state['male_wiki_continuation'],
|
107 |
-
})
|
108 |
-
st.write(samples_df)
|
109 |
-
|
110 |
-
st.write("Female Data Samples:")
|
111 |
-
samples_df = pd.DataFrame({
|
112 |
-
'Female Prompt': st.session_state['female_prompts'],
|
113 |
-
'Female Continuation': st.session_state['female_continuations'],
|
114 |
-
'Female Wiki Continuation': st.session_state['female_wiki_continuation'],
|
115 |
-
})
|
116 |
-
st.write(samples_df)
|
117 |
-
|
118 |
-
if st.button('Evaluate'):
|
119 |
-
st.subheader('Step 4: Regard Results')
|
120 |
-
regard = Regard("inner_compare")
|
121 |
-
st.write('Computing regard results to compare male and female continuations...')
|
122 |
-
|
123 |
-
with st.spinner('Computing regard results...'):
|
124 |
-
regard_male_results = regard.compute(data=st.session_state['male_continuations'],
|
125 |
-
references=st.session_state['male_wiki_continuation'])
|
126 |
-
st.write('**Raw Regard Results:**')
|
127 |
-
st.json(regard_male_results)
|
128 |
-
st.session_state['rmr'] = regard_male_results
|
129 |
-
|
130 |
-
regard_female_results = regard.compute(data=st.session_state['female_continuations'],
|
131 |
-
references=st.session_state['female_wiki_continuation'])
|
132 |
-
st.write('**Average Regard Results:**')
|
133 |
-
st.json(regard_female_results)
|
134 |
-
st.session_state['rfr'] = regard_female_results
|
135 |
-
|
136 |
-
if st.button('Plot'):
|
137 |
-
st.subheader('Step 5: Regard Results Plotting')
|
138 |
-
categories = ['GPT2', 'Wiki']
|
139 |
-
|
140 |
-
mp_gpt = st.session_state['rmr']['no_ref_diff_mean']['positive']
|
141 |
-
mn_gpt = st.session_state['rmr']['no_ref_diff_mean']['negative']
|
142 |
-
mo_gpt = 1 - (mp_gpt + mn_gpt)
|
143 |
-
|
144 |
-
mp_wiki = mp_gpt - st.session_state['rmr']['ref_diff_mean']['positive']
|
145 |
-
mn_wiki = mn_gpt -st.session_state['rmr']['ref_diff_mean']['negative']
|
146 |
-
mo_wiki = 1 - (mn_wiki + mp_wiki)
|
147 |
-
|
148 |
-
fp_gpt = st.session_state['rfr']['no_ref_diff_mean']['positive']
|
149 |
-
fn_gpt = st.session_state['rfr']['no_ref_diff_mean']['negative']
|
150 |
-
fo_gpt = 1 - (fp_gpt + fn_gpt)
|
151 |
-
|
152 |
-
fp_wiki = fp_gpt - st.session_state['rfr']['ref_diff_mean']['positive']
|
153 |
-
fn_wiki = fn_gpt - st.session_state['rfr']['ref_diff_mean']['negative']
|
154 |
-
fo_wiki = 1 - (fn_wiki + fp_wiki)
|
155 |
-
|
156 |
-
positive_m = [mp_gpt, mp_wiki]
|
157 |
-
other_m = [mo_gpt, mo_wiki]
|
158 |
-
negative_m = [mn_gpt, mn_wiki]
|
159 |
-
|
160 |
-
positive_f = [fp_gpt, fp_wiki]
|
161 |
-
other_f = [fo_gpt, fo_wiki]
|
162 |
-
negative_f = [fn_gpt, fn_wiki]
|
163 |
-
|
164 |
-
# Plotting
|
165 |
-
fig_a, ax_a = plt.subplots()
|
166 |
-
ax_a.bar(categories, negative_m, label='Negative', color='blue')
|
167 |
-
ax_a.bar(categories, other_m, bottom=negative_m, label='Other', color='orange')
|
168 |
-
ax_a.bar(categories, positive_m, bottom=[negative_m[i] + other_m[i] for i in range(len(negative_m))],
|
169 |
-
label='Positive', color='green')
|
170 |
-
|
171 |
-
plt.xlabel('Categories')
|
172 |
-
plt.ylabel('Proportion')
|
173 |
-
plt.title('GPT vs Wiki on male regard')
|
174 |
-
plt.legend()
|
175 |
-
|
176 |
-
st.pyplot(fig_a)
|
177 |
-
|
178 |
-
fig_b, ax_b = plt.subplots()
|
179 |
-
ax_b.bar(categories, negative_f, label='Negative', color='blue')
|
180 |
-
ax_b.bar(categories, other_f, bottom=negative_f, label='Other', color='orange')
|
181 |
-
ax_b.bar(categories, positive_f, bottom=[negative_f[i] + other_f[i] for i in range(len(negative_f))],
|
182 |
-
label='Positive', color='green')
|
183 |
-
|
184 |
-
plt.xlabel('Categories')
|
185 |
-
plt.ylabel('Proportion')
|
186 |
-
plt.title('GPT vs Wiki on female regard')
|
187 |
-
plt.legend()
|
188 |
-
st.pyplot(fig_b)
|
189 |
-
|
190 |
-
m_increase = mp_gpt - mn_gpt
|
191 |
-
m_relative_increase = mp_gpt - mp_wiki - (mn_gpt - mn_wiki)
|
192 |
-
f_increase = fp_gpt - fn_gpt
|
193 |
-
f_relative_increase = fp_gpt - fp_wiki - (fn_gpt - fn_wiki)
|
194 |
-
|
195 |
-
absolute_difference = [m_increase, f_increase]
|
196 |
-
relative_difference = [m_relative_increase, f_relative_increase]
|
197 |
-
|
198 |
-
new_categories = ['Male', 'Female']
|
199 |
-
|
200 |
-
fig_c, ax_c = plt.subplots()
|
201 |
-
ax_c.bar(new_categories, absolute_difference, label='Positive - Negative', color='#40E0D0')
|
202 |
-
|
203 |
-
plt.xlabel('Categories')
|
204 |
-
plt.ylabel('Proportion')
|
205 |
-
plt.title('Difference of positive and negative: Male vs Female')
|
206 |
-
plt.legend()
|
207 |
-
st.pyplot(fig_c)
|
208 |
-
|
209 |
-
fig_d, ax_d = plt.subplots()
|
210 |
-
ax_d.bar(new_categories, relative_difference, label='Positive - Negative', color='#40E0D0')
|
211 |
-
|
212 |
-
plt.xlabel('Categories')
|
213 |
-
plt.ylabel('Proportion')
|
214 |
-
plt.title('Difference of positive and negative (relative to Wiki): Male vs Female')
|
215 |
-
plt.legend()
|
216 |
-
st.pyplot(fig_d)
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
openai
|
2 |
transformers
|
3 |
-
torch==2.0.1
|
4 |
-
matplotlib
|
|
|
1 |
openai
|
2 |
transformers
|
3 |
+
torch==2.0.1
|
|
utils/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (197 Bytes)
|
|
utils/__pycache__/metric.cpython-311.pyc
DELETED
Binary file (5.82 kB)
|
|
utils/__pycache__/model.cpython-311.pyc
DELETED
Binary file (1.05 kB)
|
|
utils/metric.py
CHANGED
@@ -43,27 +43,13 @@ class Regard:
|
|
43 |
return {"average_data_regard": pred_mean, "average_references_regard": ref_mean}
|
44 |
else:
|
45 |
return {"regard_difference": {key: pred_mean[key] - ref_mean.get(key, 0) for key in pred_mean}}
|
46 |
-
|
47 |
pred_scores, pred_regard = self.regard(data)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
negative_pred_regard = pred_regard['negative']
|
57 |
-
negative_ref_regard = ref_regard['negative']
|
58 |
-
negative_diff_regard = list(range(len(negative_pred_regard)))
|
59 |
-
for score_index in range(len(negative_pred_regard)):
|
60 |
-
negative_diff_regard[score_index] = negative_pred_regard[score_index] - negative_ref_regard[score_index]
|
61 |
-
|
62 |
-
ref_diff_regard = {'positive': postive_diff_regard, 'negative': negative_diff_regard}
|
63 |
-
ref_diff_mean = {k: mean(v) for k, v in ref_diff_regard.items()}
|
64 |
-
no_ref_diff_regard = {'positive': postive_pred_regard, 'negative': negative_pred_regard}
|
65 |
-
no_ref_diff_mean = {k: mean(v) for k, v in no_ref_diff_regard.items()}
|
66 |
-
|
67 |
-
return {"ref_diff_mean": ref_diff_mean,
|
68 |
-
'no_ref_diff_mean': no_ref_diff_mean}
|
69 |
-
|
|
|
43 |
return {"average_data_regard": pred_mean, "average_references_regard": ref_mean}
|
44 |
else:
|
45 |
return {"regard_difference": {key: pred_mean[key] - ref_mean.get(key, 0) for key in pred_mean}}
|
46 |
+
else:
|
47 |
pred_scores, pred_regard = self.regard(data)
|
48 |
+
pred_mean = {k: mean(v) for k, v in pred_regard.items()}
|
49 |
+
pred_max = {k: max(v) for k, v in pred_regard.items()}
|
50 |
+
if aggregation == "maximum":
|
51 |
+
return {"max_regard": pred_max}
|
52 |
+
elif aggregation == "average":
|
53 |
+
return {"average_regard": pred_mean}
|
54 |
+
else:
|
55 |
+
return {"regard": pred_scores}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|