gokaygokay's picture
Upload 93 files
0a88b62 verified
import os
import math
import numpy as np
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
from igl import fast_winding_number_for_meshes, point_mesh_squared_distance, read_obj
from .typing import *
def get_rank():
# SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
# therefore LOCAL_RANK needs to be checked first
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
for key in rank_keys:
rank = os.environ.get(key)
if rank is not None:
return int(rank)
return 0
def dot(x, y):
return torch.sum(x * y, -1, keepdim=True)
def reflect(x, n):
return 2 * dot(x, n) * n - x
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]]
def scale_tensor(
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale
):
if inp_scale is None:
inp_scale = (0, 1)
if tgt_scale is None:
tgt_scale = (0, 1)
if isinstance(tgt_scale, Tensor):
assert dat.shape[-1] == tgt_scale.shape[-1]
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
return dat
class _TruncExp(Function): # pylint: disable=abstract-method
# Implementation from torch-ngp:
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, x): # pylint: disable=arguments-differ
ctx.save_for_backward(x)
return torch.exp(x)
@staticmethod
@custom_bwd
def backward(ctx, g): # pylint: disable=arguments-differ
x = ctx.saved_tensors[0]
return g * torch.exp(torch.clamp(x, max=15))
class SpecifyGradient(Function):
# Implementation from stable-dreamfusion
# https://github.com/ashawkey/stable-dreamfusion
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)
@staticmethod
@custom_bwd
def backward(ctx, grad_scale):
(gt_grad,) = ctx.saved_tensors
gt_grad = gt_grad * grad_scale
return gt_grad, None
trunc_exp = _TruncExp.apply
def get_activation(name) -> Callable:
if name is None:
return lambda x: x
name = name.lower()
if name == "none":
return lambda x: x
elif name == "lin2srgb":
return lambda x: torch.where(
x > 0.0031308,
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
12.92 * x,
).clamp(0.0, 1.0)
elif name == "exp":
return lambda x: torch.exp(x)
elif name == "shifted_exp":
return lambda x: torch.exp(x - 1.0)
elif name == "trunc_exp":
return trunc_exp
elif name == "shifted_trunc_exp":
return lambda x: trunc_exp(x - 1.0)
elif name == "sigmoid":
return lambda x: torch.sigmoid(x)
elif name == "tanh":
return lambda x: torch.tanh(x)
elif name == "shifted_softplus":
return lambda x: F.softplus(x - 1.0)
elif name == "scale_-11_01":
return lambda x: x * 0.5 + 0.5
else:
try:
return getattr(F, name)
except AttributeError:
raise ValueError(f"Unknown activation function: {name}")
def chunk_batch(func: Callable, chunk_size: int, triplane=None, *args, **kwargs) -> Any:
if chunk_size <= 0:
return func(*args, **kwargs)
B = None
for arg in list(args) + list(kwargs.values()):
if isinstance(arg, torch.Tensor):
B = arg.shape[0]
break
assert (
B is not None
), "No tensor found in args or kwargs, cannot determine batch size."
out = defaultdict(list)
out_type = None
# max(1, B) to support B == 0
for i in range(0, max(1, B), chunk_size):
if triplane is not None:
out_chunk = func(triplane=triplane,
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
else:
out_chunk = func(
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
if out_chunk is None:
continue
out_type = type(out_chunk)
if isinstance(out_chunk, torch.Tensor):
out_chunk = {0: out_chunk}
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
chunk_length = len(out_chunk)
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
elif isinstance(out_chunk, dict):
pass
else:
print(
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
)
exit(1)
for k, v in out_chunk.items():
v = v if torch.is_grad_enabled() else v.detach()
out[k].append(v)
if out_type is None:
return None
out_merged: Dict[Any, Optional[torch.Tensor]] = {}
for k, v in out.items():
if all([vv is None for vv in v]):
# allow None in return value
out_merged[k] = None
elif all([isinstance(vv, torch.Tensor) for vv in v]):
out_merged[k] = torch.cat(v, dim=0)
else:
raise TypeError(
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
)
if out_type is torch.Tensor:
return out_merged[0]
elif out_type in [tuple, list]:
return out_type([out_merged[i] for i in range(chunk_length)])
elif out_type is dict:
return out_merged
def get_ray_directions(
H: int,
W: int,
focal: Union[float, Tuple[float, float]],
principal: Optional[Tuple[float, float]] = None,
use_pixel_centers: bool = True,
) -> Float[Tensor, "H W 3"]:
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
pixel_center = 0.5 if use_pixel_centers else 0
if isinstance(focal, float):
fx, fy = focal, focal
cx, cy = W / 2, H / 2
else:
fx, fy = focal
assert principal is not None
cx, cy = principal
i, j = torch.meshgrid(
torch.arange(W, dtype=torch.float32) + pixel_center,
torch.arange(H, dtype=torch.float32) + pixel_center,
indexing="xy",
)
directions: Float[Tensor, "H W 3"] = torch.stack(
[(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1
)
return directions
def get_rays(
directions: Float[Tensor, "... 3"],
c2w: Float[Tensor, "... 4 4"],
keepdim=False,
noise_scale=0.0,
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]:
# Rotate ray directions from camera coordinate to the world coordinate
assert directions.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
if c2w.ndim == 2: # (4, 4)
c2w = c2w[None, :, :]
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4)
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3)
rays_o = c2w[:, :3, 3].expand(rays_d.shape)
elif directions.ndim == 3: # (H, W, 3)
assert c2w.ndim in [2, 3]
if c2w.ndim == 2: # (4, 4)
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
-1
) # (H, W, 3)
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
elif directions.ndim == 4: # (B, H, W, 3)
assert c2w.ndim == 3 # (B, 4, 4)
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
# add camera noise to avoid grid-like artifect
# https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373
if noise_scale > 0:
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale
rays_d = F.normalize(rays_d, dim=-1)
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
def get_projection_matrix(
fovy: Float[Tensor, "B"], aspect_wh: float, near: float, far: float
) -> Float[Tensor, "B 4 4"]:
batch_size = fovy.shape[0]
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32)
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh)
proj_mtx[:, 1, 1] = -1.0 / torch.tan(
fovy / 2.0
) # add a negative sign here as the y axis is flipped in nvdiffrast output
proj_mtx[:, 2, 2] = -(far + near) / (far - near)
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near)
proj_mtx[:, 3, 2] = -1.0
return proj_mtx
def get_mvp_matrix(
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"]
) -> Float[Tensor, "B 4 4"]:
# calculate w2c from c2w: R' = Rt, t' = -Rt * t
# mathematically equivalent to (c2w)^-1
w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w)
w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1)
w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:]
w2c[:, 3, 3] = 1.0
# calculate mvp matrix by proj_mtx @ w2c (mv_mtx)
mvp_mtx = proj_mtx @ w2c
return mvp_mtx
def get_full_projection_matrix(
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"]
) -> Float[Tensor, "B 4 4"]:
return (c2w.unsqueeze(0).bmm(proj_mtx.unsqueeze(0))).squeeze(0)
# gaussian splatting functions
def convert_pose(C2W):
flip_yz = torch.eye(4, device=C2W.device)
flip_yz[1, 1] = -1
flip_yz[2, 2] = -1
C2W = torch.matmul(C2W, flip_yz)
return C2W
def get_projection_matrix_gaussian(znear, zfar, fovX, fovY, device="cuda"):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4, device=device)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def get_fov_gaussian(P):
tanHalfFovX = 1 / P[0, 0]
tanHalfFovY = 1 / P[1, 1]
fovY = math.atan(tanHalfFovY) * 2
fovX = math.atan(tanHalfFovX) * 2
return fovX, fovY
def get_cam_info_gaussian(c2w, fovx, fovy, znear, zfar):
c2w = convert_pose(c2w)
world_view_transform = torch.inverse(c2w)
world_view_transform = world_view_transform.transpose(0, 1).cuda().float()
projection_matrix = (
get_projection_matrix_gaussian(znear=znear, zfar=zfar, fovX=fovx, fovY=fovy)
.transpose(0, 1)
.cuda()
)
full_proj_transform = (
world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))
).squeeze(0)
camera_center = world_view_transform.inverse()[3, :3]
return world_view_transform, full_proj_transform, camera_center
def binary_cross_entropy(input, target):
"""
F.binary_cross_entropy is not numerically stable in mixed-precision training.
"""
return -(target * torch.log(input) + (1 - target) * torch.log(1 - input)).mean()
def tet_sdf_diff(
vert_sdf: Float[Tensor, "Nv 1"], tet_edges: Integer[Tensor, "Ne 2"]
) -> Float[Tensor, ""]:
sdf_f1x6x2 = vert_sdf[:, 0][tet_edges.reshape(-1)].reshape(-1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()
) + F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()
)
return sdf_diff
# Implementation from Latent-NeRF
# https://github.com/eladrich/latent-nerf/blob/f49ecefcd48972e69a28e3116fe95edf0fac4dc8/src/latent_nerf/models/mesh_utils.py
class MeshOBJ:
dx = torch.zeros(3).float()
dx[0] = 1
dy, dz = dx[[1, 0, 2]], dx[[2, 1, 0]]
dx, dy, dz = dx[None, :], dy[None, :], dz[None, :]
def __init__(self, v: np.ndarray, f: np.ndarray):
self.v = v
self.f = f
self.dx, self.dy, self.dz = MeshOBJ.dx, MeshOBJ.dy, MeshOBJ.dz
self.v_tensor = torch.from_numpy(self.v)
vf = self.v[self.f, :]
self.f_center = vf.mean(axis=1)
self.f_center_tensor = torch.from_numpy(self.f_center).float()
e1 = vf[:, 1, :] - vf[:, 0, :]
e2 = vf[:, 2, :] - vf[:, 0, :]
self.face_normals = np.cross(e1, e2)
self.face_normals = (
self.face_normals / np.linalg.norm(self.face_normals, axis=-1)[:, None]
)
self.face_normals_tensor = torch.from_numpy(self.face_normals)
def normalize_mesh(self, target_scale=0.5):
verts = self.v
# Compute center of bounding box
# center = torch.mean(torch.column_stack([torch.max(verts, dim=0)[0], torch.min(verts, dim=0)[0]]))
center = verts.mean(axis=0)
verts = verts - center
scale = np.max(np.linalg.norm(verts, axis=1))
verts = (verts / scale) * target_scale
return MeshOBJ(verts, self.f)
def winding_number(self, query: torch.Tensor):
device = query.device
shp = query.shape
query_np = query.detach().cpu().reshape(-1, 3).numpy()
target_alphas = fast_winding_number_for_meshes(
self.v.astype(np.float32), self.f, query_np
)
return torch.from_numpy(target_alphas).reshape(shp[:-1]).to(device)
def gaussian_weighted_distance(self, query: torch.Tensor, sigma):
device = query.device
shp = query.shape
query_np = query.detach().cpu().reshape(-1, 3).numpy()
distances, _, _ = point_mesh_squared_distance(
query_np, self.v.astype(np.float32), self.f
)
distances = torch.from_numpy(distances).reshape(shp[:-1]).to(device)
weight = torch.exp(-(distances / (2 * sigma**2)))
return weight
def ce_pq_loss(p, q, weight=None):
def clamp(v, T=0.0001):
return v.clamp(T, 1 - T)
p = p.view(q.shape)
ce = -1 * (p * torch.log(clamp(q)) + (1 - p) * torch.log(clamp(1 - q)))
if weight is not None:
ce *= weight
return ce.sum()
class ShapeLoss(nn.Module):
def __init__(self, guide_shape):
super().__init__()
self.mesh_scale = 0.7
self.proximal_surface = 0.3
self.delta = 0.2
self.shape_path = guide_shape
v, _, _, f, _, _ = read_obj(self.shape_path, float)
mesh = MeshOBJ(v, f)
matrix_rot = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) @ np.array(
[[0, 0, 1], [0, 1, 0], [-1, 0, 0]]
)
self.sketchshape = mesh.normalize_mesh(self.mesh_scale)
self.sketchshape = MeshOBJ(
np.ascontiguousarray(
(matrix_rot @ self.sketchshape.v.transpose(1, 0)).transpose(1, 0)
),
f,
)
def forward(self, xyzs, sigmas):
mesh_occ = self.sketchshape.winding_number(xyzs)
if self.proximal_surface > 0:
weight = 1 - self.sketchshape.gaussian_weighted_distance(
xyzs, self.proximal_surface
)
else:
weight = None
indicator = (mesh_occ > 0.5).float()
nerf_occ = 1 - torch.exp(-self.delta * sigmas)
nerf_occ = nerf_occ.clamp(min=0, max=1.1)
loss = ce_pq_loss(
nerf_occ, indicator, weight=weight
) # order is important for CE loss + second argument may not be optimized
return loss
def shifted_expotional_decay(a, b, c, r):
return a * torch.exp(-b * r) + c
def shifted_cosine_decay(a, b, c, r):
return a * torch.cos(b * r + c) + a
def perpendicular_component(x: Float[Tensor, "B C H W"], y: Float[Tensor, "B C H W"]):
# get the component of x that is perpendicular to y
eps = torch.ones_like(x[:, 0, 0, 0]) * 1e-6
return (
x
- (
torch.mul(x, y).sum(dim=[1, 2, 3])
/ torch.maximum(torch.mul(y, y).sum(dim=[1, 2, 3]), eps)
).view(-1, 1, 1, 1)
* y
)
def validate_empty_rays(ray_indices, t_start, t_end):
if ray_indices.nelement() == 0:
print("Warn Empty rays_indices!")
ray_indices = torch.LongTensor([0]).to(ray_indices)
t_start = torch.Tensor([0]).to(ray_indices)
t_end = torch.Tensor([0]).to(ray_indices)
return ray_indices, t_start, t_end