Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import math | |
import numpy as np | |
from collections import defaultdict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Function | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
from igl import fast_winding_number_for_meshes, point_mesh_squared_distance, read_obj | |
from .typing import * | |
def get_rank(): | |
# SLURM_PROCID can be set even if SLURM is not managing the multiprocessing, | |
# therefore LOCAL_RANK needs to be checked first | |
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK") | |
for key in rank_keys: | |
rank = os.environ.get(key) | |
if rank is not None: | |
return int(rank) | |
return 0 | |
def dot(x, y): | |
return torch.sum(x * y, -1, keepdim=True) | |
def reflect(x, n): | |
return 2 * dot(x, n) * n - x | |
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]] | |
def scale_tensor( | |
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale | |
): | |
if inp_scale is None: | |
inp_scale = (0, 1) | |
if tgt_scale is None: | |
tgt_scale = (0, 1) | |
if isinstance(tgt_scale, Tensor): | |
assert dat.shape[-1] == tgt_scale.shape[-1] | |
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0]) | |
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0] | |
return dat | |
class _TruncExp(Function): # pylint: disable=abstract-method | |
# Implementation from torch-ngp: | |
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py | |
def forward(ctx, x): # pylint: disable=arguments-differ | |
ctx.save_for_backward(x) | |
return torch.exp(x) | |
def backward(ctx, g): # pylint: disable=arguments-differ | |
x = ctx.saved_tensors[0] | |
return g * torch.exp(torch.clamp(x, max=15)) | |
class SpecifyGradient(Function): | |
# Implementation from stable-dreamfusion | |
# https://github.com/ashawkey/stable-dreamfusion | |
def forward(ctx, input_tensor, gt_grad): | |
ctx.save_for_backward(gt_grad) | |
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward. | |
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype) | |
def backward(ctx, grad_scale): | |
(gt_grad,) = ctx.saved_tensors | |
gt_grad = gt_grad * grad_scale | |
return gt_grad, None | |
trunc_exp = _TruncExp.apply | |
def get_activation(name) -> Callable: | |
if name is None: | |
return lambda x: x | |
name = name.lower() | |
if name == "none": | |
return lambda x: x | |
elif name == "lin2srgb": | |
return lambda x: torch.where( | |
x > 0.0031308, | |
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055, | |
12.92 * x, | |
).clamp(0.0, 1.0) | |
elif name == "exp": | |
return lambda x: torch.exp(x) | |
elif name == "shifted_exp": | |
return lambda x: torch.exp(x - 1.0) | |
elif name == "trunc_exp": | |
return trunc_exp | |
elif name == "shifted_trunc_exp": | |
return lambda x: trunc_exp(x - 1.0) | |
elif name == "sigmoid": | |
return lambda x: torch.sigmoid(x) | |
elif name == "tanh": | |
return lambda x: torch.tanh(x) | |
elif name == "shifted_softplus": | |
return lambda x: F.softplus(x - 1.0) | |
elif name == "scale_-11_01": | |
return lambda x: x * 0.5 + 0.5 | |
else: | |
try: | |
return getattr(F, name) | |
except AttributeError: | |
raise ValueError(f"Unknown activation function: {name}") | |
def chunk_batch(func: Callable, chunk_size: int, triplane=None, *args, **kwargs) -> Any: | |
if chunk_size <= 0: | |
return func(*args, **kwargs) | |
B = None | |
for arg in list(args) + list(kwargs.values()): | |
if isinstance(arg, torch.Tensor): | |
B = arg.shape[0] | |
break | |
assert ( | |
B is not None | |
), "No tensor found in args or kwargs, cannot determine batch size." | |
out = defaultdict(list) | |
out_type = None | |
# max(1, B) to support B == 0 | |
for i in range(0, max(1, B), chunk_size): | |
if triplane is not None: | |
out_chunk = func(triplane=triplane, | |
*[ | |
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg | |
for arg in args | |
], | |
**{ | |
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg | |
for k, arg in kwargs.items() | |
}, | |
) | |
else: | |
out_chunk = func( | |
*[ | |
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg | |
for arg in args | |
], | |
**{ | |
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg | |
for k, arg in kwargs.items() | |
}, | |
) | |
if out_chunk is None: | |
continue | |
out_type = type(out_chunk) | |
if isinstance(out_chunk, torch.Tensor): | |
out_chunk = {0: out_chunk} | |
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list): | |
chunk_length = len(out_chunk) | |
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)} | |
elif isinstance(out_chunk, dict): | |
pass | |
else: | |
print( | |
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}." | |
) | |
exit(1) | |
for k, v in out_chunk.items(): | |
v = v if torch.is_grad_enabled() else v.detach() | |
out[k].append(v) | |
if out_type is None: | |
return None | |
out_merged: Dict[Any, Optional[torch.Tensor]] = {} | |
for k, v in out.items(): | |
if all([vv is None for vv in v]): | |
# allow None in return value | |
out_merged[k] = None | |
elif all([isinstance(vv, torch.Tensor) for vv in v]): | |
out_merged[k] = torch.cat(v, dim=0) | |
else: | |
raise TypeError( | |
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}" | |
) | |
if out_type is torch.Tensor: | |
return out_merged[0] | |
elif out_type in [tuple, list]: | |
return out_type([out_merged[i] for i in range(chunk_length)]) | |
elif out_type is dict: | |
return out_merged | |
def get_ray_directions( | |
H: int, | |
W: int, | |
focal: Union[float, Tuple[float, float]], | |
principal: Optional[Tuple[float, float]] = None, | |
use_pixel_centers: bool = True, | |
) -> Float[Tensor, "H W 3"]: | |
""" | |
Get ray directions for all pixels in camera coordinate. | |
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ | |
ray-tracing-generating-camera-rays/standard-coordinate-systems | |
Inputs: | |
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers | |
Outputs: | |
directions: (H, W, 3), the direction of the rays in camera coordinate | |
""" | |
pixel_center = 0.5 if use_pixel_centers else 0 | |
if isinstance(focal, float): | |
fx, fy = focal, focal | |
cx, cy = W / 2, H / 2 | |
else: | |
fx, fy = focal | |
assert principal is not None | |
cx, cy = principal | |
i, j = torch.meshgrid( | |
torch.arange(W, dtype=torch.float32) + pixel_center, | |
torch.arange(H, dtype=torch.float32) + pixel_center, | |
indexing="xy", | |
) | |
directions: Float[Tensor, "H W 3"] = torch.stack( | |
[(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1 | |
) | |
return directions | |
def get_rays( | |
directions: Float[Tensor, "... 3"], | |
c2w: Float[Tensor, "... 4 4"], | |
keepdim=False, | |
noise_scale=0.0, | |
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]: | |
# Rotate ray directions from camera coordinate to the world coordinate | |
assert directions.shape[-1] == 3 | |
if directions.ndim == 2: # (N_rays, 3) | |
if c2w.ndim == 2: # (4, 4) | |
c2w = c2w[None, :, :] | |
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4) | |
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3) | |
rays_o = c2w[:, :3, 3].expand(rays_d.shape) | |
elif directions.ndim == 3: # (H, W, 3) | |
assert c2w.ndim in [2, 3] | |
if c2w.ndim == 2: # (4, 4) | |
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum( | |
-1 | |
) # (H, W, 3) | |
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape) | |
elif c2w.ndim == 3: # (B, 4, 4) | |
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( | |
-1 | |
) # (B, H, W, 3) | |
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) | |
elif directions.ndim == 4: # (B, H, W, 3) | |
assert c2w.ndim == 3 # (B, 4, 4) | |
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( | |
-1 | |
) # (B, H, W, 3) | |
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) | |
# add camera noise to avoid grid-like artifect | |
# https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373 | |
if noise_scale > 0: | |
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale | |
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale | |
rays_d = F.normalize(rays_d, dim=-1) | |
if not keepdim: | |
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) | |
return rays_o, rays_d | |
def get_projection_matrix( | |
fovy: Float[Tensor, "B"], aspect_wh: float, near: float, far: float | |
) -> Float[Tensor, "B 4 4"]: | |
batch_size = fovy.shape[0] | |
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32) | |
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh) | |
proj_mtx[:, 1, 1] = -1.0 / torch.tan( | |
fovy / 2.0 | |
) # add a negative sign here as the y axis is flipped in nvdiffrast output | |
proj_mtx[:, 2, 2] = -(far + near) / (far - near) | |
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near) | |
proj_mtx[:, 3, 2] = -1.0 | |
return proj_mtx | |
def get_mvp_matrix( | |
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"] | |
) -> Float[Tensor, "B 4 4"]: | |
# calculate w2c from c2w: R' = Rt, t' = -Rt * t | |
# mathematically equivalent to (c2w)^-1 | |
w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w) | |
w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1) | |
w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:] | |
w2c[:, 3, 3] = 1.0 | |
# calculate mvp matrix by proj_mtx @ w2c (mv_mtx) | |
mvp_mtx = proj_mtx @ w2c | |
return mvp_mtx | |
def get_full_projection_matrix( | |
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"] | |
) -> Float[Tensor, "B 4 4"]: | |
return (c2w.unsqueeze(0).bmm(proj_mtx.unsqueeze(0))).squeeze(0) | |
# gaussian splatting functions | |
def convert_pose(C2W): | |
flip_yz = torch.eye(4, device=C2W.device) | |
flip_yz[1, 1] = -1 | |
flip_yz[2, 2] = -1 | |
C2W = torch.matmul(C2W, flip_yz) | |
return C2W | |
def get_projection_matrix_gaussian(znear, zfar, fovX, fovY, device="cuda"): | |
tanHalfFovY = math.tan((fovY / 2)) | |
tanHalfFovX = math.tan((fovX / 2)) | |
top = tanHalfFovY * znear | |
bottom = -top | |
right = tanHalfFovX * znear | |
left = -right | |
P = torch.zeros(4, 4, device=device) | |
z_sign = 1.0 | |
P[0, 0] = 2.0 * znear / (right - left) | |
P[1, 1] = 2.0 * znear / (top - bottom) | |
P[0, 2] = (right + left) / (right - left) | |
P[1, 2] = (top + bottom) / (top - bottom) | |
P[3, 2] = z_sign | |
P[2, 2] = z_sign * zfar / (zfar - znear) | |
P[2, 3] = -(zfar * znear) / (zfar - znear) | |
return P | |
def get_fov_gaussian(P): | |
tanHalfFovX = 1 / P[0, 0] | |
tanHalfFovY = 1 / P[1, 1] | |
fovY = math.atan(tanHalfFovY) * 2 | |
fovX = math.atan(tanHalfFovX) * 2 | |
return fovX, fovY | |
def get_cam_info_gaussian(c2w, fovx, fovy, znear, zfar): | |
c2w = convert_pose(c2w) | |
world_view_transform = torch.inverse(c2w) | |
world_view_transform = world_view_transform.transpose(0, 1).cuda().float() | |
projection_matrix = ( | |
get_projection_matrix_gaussian(znear=znear, zfar=zfar, fovX=fovx, fovY=fovy) | |
.transpose(0, 1) | |
.cuda() | |
) | |
full_proj_transform = ( | |
world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0)) | |
).squeeze(0) | |
camera_center = world_view_transform.inverse()[3, :3] | |
return world_view_transform, full_proj_transform, camera_center | |
def binary_cross_entropy(input, target): | |
""" | |
F.binary_cross_entropy is not numerically stable in mixed-precision training. | |
""" | |
return -(target * torch.log(input) + (1 - target) * torch.log(1 - input)).mean() | |
def tet_sdf_diff( | |
vert_sdf: Float[Tensor, "Nv 1"], tet_edges: Integer[Tensor, "Ne 2"] | |
) -> Float[Tensor, ""]: | |
sdf_f1x6x2 = vert_sdf[:, 0][tet_edges.reshape(-1)].reshape(-1, 2) | |
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) | |
sdf_f1x6x2 = sdf_f1x6x2[mask] | |
sdf_diff = F.binary_cross_entropy_with_logits( | |
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float() | |
) + F.binary_cross_entropy_with_logits( | |
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float() | |
) | |
return sdf_diff | |
# Implementation from Latent-NeRF | |
# https://github.com/eladrich/latent-nerf/blob/f49ecefcd48972e69a28e3116fe95edf0fac4dc8/src/latent_nerf/models/mesh_utils.py | |
class MeshOBJ: | |
dx = torch.zeros(3).float() | |
dx[0] = 1 | |
dy, dz = dx[[1, 0, 2]], dx[[2, 1, 0]] | |
dx, dy, dz = dx[None, :], dy[None, :], dz[None, :] | |
def __init__(self, v: np.ndarray, f: np.ndarray): | |
self.v = v | |
self.f = f | |
self.dx, self.dy, self.dz = MeshOBJ.dx, MeshOBJ.dy, MeshOBJ.dz | |
self.v_tensor = torch.from_numpy(self.v) | |
vf = self.v[self.f, :] | |
self.f_center = vf.mean(axis=1) | |
self.f_center_tensor = torch.from_numpy(self.f_center).float() | |
e1 = vf[:, 1, :] - vf[:, 0, :] | |
e2 = vf[:, 2, :] - vf[:, 0, :] | |
self.face_normals = np.cross(e1, e2) | |
self.face_normals = ( | |
self.face_normals / np.linalg.norm(self.face_normals, axis=-1)[:, None] | |
) | |
self.face_normals_tensor = torch.from_numpy(self.face_normals) | |
def normalize_mesh(self, target_scale=0.5): | |
verts = self.v | |
# Compute center of bounding box | |
# center = torch.mean(torch.column_stack([torch.max(verts, dim=0)[0], torch.min(verts, dim=0)[0]])) | |
center = verts.mean(axis=0) | |
verts = verts - center | |
scale = np.max(np.linalg.norm(verts, axis=1)) | |
verts = (verts / scale) * target_scale | |
return MeshOBJ(verts, self.f) | |
def winding_number(self, query: torch.Tensor): | |
device = query.device | |
shp = query.shape | |
query_np = query.detach().cpu().reshape(-1, 3).numpy() | |
target_alphas = fast_winding_number_for_meshes( | |
self.v.astype(np.float32), self.f, query_np | |
) | |
return torch.from_numpy(target_alphas).reshape(shp[:-1]).to(device) | |
def gaussian_weighted_distance(self, query: torch.Tensor, sigma): | |
device = query.device | |
shp = query.shape | |
query_np = query.detach().cpu().reshape(-1, 3).numpy() | |
distances, _, _ = point_mesh_squared_distance( | |
query_np, self.v.astype(np.float32), self.f | |
) | |
distances = torch.from_numpy(distances).reshape(shp[:-1]).to(device) | |
weight = torch.exp(-(distances / (2 * sigma**2))) | |
return weight | |
def ce_pq_loss(p, q, weight=None): | |
def clamp(v, T=0.0001): | |
return v.clamp(T, 1 - T) | |
p = p.view(q.shape) | |
ce = -1 * (p * torch.log(clamp(q)) + (1 - p) * torch.log(clamp(1 - q))) | |
if weight is not None: | |
ce *= weight | |
return ce.sum() | |
class ShapeLoss(nn.Module): | |
def __init__(self, guide_shape): | |
super().__init__() | |
self.mesh_scale = 0.7 | |
self.proximal_surface = 0.3 | |
self.delta = 0.2 | |
self.shape_path = guide_shape | |
v, _, _, f, _, _ = read_obj(self.shape_path, float) | |
mesh = MeshOBJ(v, f) | |
matrix_rot = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) @ np.array( | |
[[0, 0, 1], [0, 1, 0], [-1, 0, 0]] | |
) | |
self.sketchshape = mesh.normalize_mesh(self.mesh_scale) | |
self.sketchshape = MeshOBJ( | |
np.ascontiguousarray( | |
(matrix_rot @ self.sketchshape.v.transpose(1, 0)).transpose(1, 0) | |
), | |
f, | |
) | |
def forward(self, xyzs, sigmas): | |
mesh_occ = self.sketchshape.winding_number(xyzs) | |
if self.proximal_surface > 0: | |
weight = 1 - self.sketchshape.gaussian_weighted_distance( | |
xyzs, self.proximal_surface | |
) | |
else: | |
weight = None | |
indicator = (mesh_occ > 0.5).float() | |
nerf_occ = 1 - torch.exp(-self.delta * sigmas) | |
nerf_occ = nerf_occ.clamp(min=0, max=1.1) | |
loss = ce_pq_loss( | |
nerf_occ, indicator, weight=weight | |
) # order is important for CE loss + second argument may not be optimized | |
return loss | |
def shifted_expotional_decay(a, b, c, r): | |
return a * torch.exp(-b * r) + c | |
def shifted_cosine_decay(a, b, c, r): | |
return a * torch.cos(b * r + c) + a | |
def perpendicular_component(x: Float[Tensor, "B C H W"], y: Float[Tensor, "B C H W"]): | |
# get the component of x that is perpendicular to y | |
eps = torch.ones_like(x[:, 0, 0, 0]) * 1e-6 | |
return ( | |
x | |
- ( | |
torch.mul(x, y).sum(dim=[1, 2, 3]) | |
/ torch.maximum(torch.mul(y, y).sum(dim=[1, 2, 3]), eps) | |
).view(-1, 1, 1, 1) | |
* y | |
) | |
def validate_empty_rays(ray_indices, t_start, t_end): | |
if ray_indices.nelement() == 0: | |
print("Warn Empty rays_indices!") | |
ray_indices = torch.LongTensor([0]).to(ray_indices) | |
t_start = torch.Tensor([0]).to(ray_indices) | |
t_end = torch.Tensor([0]).to(ray_indices) | |
return ray_indices, t_start, t_end | |