Spaces:
Running
on
Zero
Running
on
Zero
# ORIGINAL LICENSE | |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
# | |
# Modified by Zexin He | |
# The modifications are subject to the same license as the original. | |
import itertools | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .utils.renderer import ImportanceRenderer, sample_from_planes | |
from .utils.ray_sampler import RaySampler | |
from ...utils.ops import get_rank | |
class OSGDecoder(nn.Module): | |
""" | |
Triplane decoder that gives RGB and sigma values from sampled features. | |
Using ReLU here instead of Softplus in the original implementation. | |
Reference: | |
EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112 | |
""" | |
def __init__(self, n_features: int, | |
hidden_dim: int = 64, | |
num_layers: int = 2, | |
activation: nn.Module = nn.ReLU, | |
sdf_bias='sphere', | |
sdf_bias_params=0.5, | |
output_normal=True, | |
normal_type='finite_difference'): | |
super().__init__() | |
self.sdf_bias = sdf_bias | |
self.sdf_bias_params = sdf_bias_params | |
self.output_normal = output_normal | |
self.normal_type = normal_type | |
self.net = nn.Sequential( | |
nn.Linear(3 * n_features, hidden_dim), | |
activation(), | |
*itertools.chain(*[[ | |
nn.Linear(hidden_dim, hidden_dim), | |
activation(), | |
] for _ in range(num_layers - 2)]), | |
nn.Linear(hidden_dim, 1 + 3), | |
) | |
# init all bias to zero | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.zeros_(m.bias) | |
def forward(self, ray_directions, sample_coordinates, plane_axes, planes, options): | |
# Aggregate features by mean | |
# sampled_features = sampled_features.mean(1) | |
# Aggregate features by concatenation | |
# torch.set_grad_enabled(True) | |
# sample_coordinates.requires_grad_(True) | |
sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) | |
_N, n_planes, _M, _C = sampled_features.shape | |
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) | |
x = sampled_features | |
N, M, C = x.shape | |
# x = x.contiguous().view(N*M, C) | |
x = self.net(x) | |
x = x.view(N, M, -1) | |
rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF | |
sdf = x[..., 0:1] | |
# import ipdb; ipdb.set_trace() | |
# print(f'sample_coordinates shape: {sample_coordinates.shape}') | |
# sdf = self.get_shifted_sdf(sample_coordinates, sdf) | |
# calculate normal | |
eps = 0.01 | |
offsets = torch.as_tensor( | |
[[eps, 0.0, 0.0], [0.0, eps, 0.0], [0.0, 0.0, eps]] | |
).to(sample_coordinates) | |
points_offset = ( | |
sample_coordinates[..., None, :] + offsets # Float[Tensor, "... 3 3"] | |
).clamp(options['sampler_bbox_min'], options['sampler_bbox_max']) | |
sdf_offset_list = [self.forward_sdf( | |
plane_axes, | |
planes, | |
points_offset[:,:,i,:], | |
options | |
).unsqueeze(-2) for i in range(points_offset.shape[-2])] # Float[Tensor, "... 3 1"] | |
# import ipdb; ipdb.set_trace() | |
sdf_offset = torch.cat(sdf_offset_list, -2) | |
sdf_grad = (sdf_offset[..., 0::1, 0] - sdf) / eps | |
normal = F.normalize(sdf_grad, dim=-1).to(sdf.dtype) | |
return {'rgb': rgb, 'sdf': sdf, 'normal': normal, 'sdf_grad': sdf_grad} | |
def forward_sdf(self, plane_axes, planes, points_offset, options): | |
sampled_features = sample_from_planes(plane_axes, planes, points_offset, padding_mode='zeros', box_warp=options['box_warp']) | |
_N, n_planes, _M, _C = sampled_features.shape | |
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) | |
x = sampled_features | |
N, M, C = x.shape | |
# x = x.contiguous().view(N*M, C) | |
x = self.net(x) | |
x = x.view(N, M, -1) | |
sdf = x[..., 0:1] | |
# sdf = self.get_shifted_sdf(points_offset, sdf) | |
return sdf | |
def get_shifted_sdf( | |
self, points, sdf | |
): | |
if self.sdf_bias == "sphere": | |
assert isinstance(self.sdf_bias_params, float) | |
radius = self.sdf_bias_params | |
sdf_bias = (points**2).sum(dim=-1, keepdim=True).sqrt() - radius | |
else: | |
raise ValueError(f"Unknown sdf bias {self.cfg.sdf_bias}") | |
return sdf + sdf_bias.to(sdf.dtype) | |
class TriplaneSynthesizer(nn.Module): | |
""" | |
Synthesizer that renders a triplane volume with planes and a camera. | |
Reference: | |
EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19 | |
""" | |
DEFAULT_RENDERING_KWARGS = { | |
'ray_start': 'auto', | |
'ray_end': 'auto', | |
'box_warp': 1.2, | |
# 'box_warp': 1., | |
'white_back': True, | |
'disparity_space_sampling': False, | |
'clamp_mode': 'softplus', | |
# 'sampler_bbox_min': -1, | |
# 'sampler_bbox_max': 1., | |
'sampler_bbox_min': -0.6, | |
'sampler_bbox_max': 0.6, | |
} | |
print('DEFAULT_RENDERING_KWARGS') | |
print(DEFAULT_RENDERING_KWARGS) | |
def __init__(self, triplane_dim: int, samples_per_ray: int, osg_decoder='default'): | |
super().__init__() | |
# attributes | |
self.triplane_dim = triplane_dim | |
self.rendering_kwargs = { | |
**self.DEFAULT_RENDERING_KWARGS, | |
'depth_resolution': samples_per_ray, | |
'depth_resolution_importance': 0 | |
# 'depth_resolution': samples_per_ray // 2, | |
# 'depth_resolution_importance': samples_per_ray // 2, | |
} | |
# renderings | |
self.renderer = ImportanceRenderer() | |
self.ray_sampler = RaySampler() | |
# modules | |
if osg_decoder == 'default': | |
self.decoder = OSGDecoder(n_features=triplane_dim) | |
else: | |
raise NotImplementedError | |
def forward(self, planes, ray_origins, ray_directions, render_size, bgcolor=None): | |
# planes: (N, 3, D', H', W') | |
# render_size: int | |
assert ray_origins.dim() == 3, "ray_origins should be 3-dimensional" | |
# Perform volume rendering | |
rgb_samples, depth_samples, weights_samples, sdf_grad, normal_samples = self.renderer( | |
planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs, bgcolor | |
) | |
N = planes.shape[0] | |
# zhaohx : add for normals | |
normal_samples = F.normalize(normal_samples, dim=-1) | |
normal_samples = (normal_samples + 1.0) / 2.0 # for visualization | |
normal_samples = torch.lerp(torch.zeros_like(normal_samples), normal_samples, weights_samples) | |
# Reshape into 'raw' neural-rendered image | |
Himg = Wimg = render_size | |
rgb_images = rgb_samples.permute(0, 2, 1).reshape(N, rgb_samples.shape[-1], Himg, Wimg).contiguous() | |
depth_images = depth_samples.permute(0, 2, 1).reshape(N, 1, Himg, Wimg) | |
weight_images = weights_samples.permute(0, 2, 1).reshape(N, 1, Himg, Wimg) | |
# zhaohx : add for normals | |
normal_images = normal_samples.permute(0, 2, 1).reshape(N, normal_samples.shape[-1], Himg, Wimg).contiguous() | |
# return { | |
# 'images_rgb': rgb_images, | |
# 'images_depth': depth_images, | |
# 'images_weight': weight_images, | |
# } | |
return { | |
'comp_rgb': rgb_images, | |
'comp_depth': depth_images, | |
'opacity': weight_images, | |
'sdf_grad': sdf_grad, | |
'comp_normal': normal_images | |
} | |
# 输出normal的话在这个return里加 | |
def forward_grid(self, planes, grid_size: int, aabb: torch.Tensor = None): | |
# planes: (N, 3, D', H', W') | |
# grid_size: int | |
# aabb: (N, 2, 3) | |
if aabb is None: | |
aabb = torch.tensor([ | |
[self.rendering_kwargs['sampler_bbox_min']] * 3, | |
[self.rendering_kwargs['sampler_bbox_max']] * 3, | |
], device=planes.device, dtype=planes.dtype).unsqueeze(0).repeat(planes.shape[0], 1, 1) | |
assert planes.shape[0] == aabb.shape[0], "Batch size mismatch for planes and aabb" | |
N = planes.shape[0] | |
# create grid points for triplane query | |
grid_points = [] | |
for i in range(N): | |
grid_points.append(torch.stack(torch.meshgrid( | |
torch.linspace(aabb[i, 0, 0], aabb[i, 1, 0], grid_size, device=planes.device), | |
torch.linspace(aabb[i, 0, 1], aabb[i, 1, 1], grid_size, device=planes.device), | |
torch.linspace(aabb[i, 0, 2], aabb[i, 1, 2], grid_size, device=planes.device), | |
indexing='ij', | |
), dim=-1).reshape(-1, 3)) | |
cube_grid = torch.stack(grid_points, dim=0).to(planes.device) | |
features = self.forward_points(planes, cube_grid) | |
# reshape into grid | |
features = { | |
k: v.reshape(N, grid_size, grid_size, grid_size, -1) | |
for k, v in features.items() | |
} | |
return features | |
def forward_points(self, planes, points: torch.Tensor, chunk_size: int = 2**20): | |
# planes: (N, 3, D', H', W') | |
# points: (N, P, 3) | |
N, P = points.shape[:2] | |
# query triplane in chunks | |
outs = [] | |
for i in range(0, points.shape[1], chunk_size): | |
chunk_points = points[:, i:i+chunk_size] | |
# query triplane | |
# chunk_out = self.renderer.run_model_activated( | |
chunk_out = self.renderer.run_model( | |
planes=planes, | |
decoder=self.decoder, | |
sample_coordinates=chunk_points, | |
sample_directions=torch.zeros_like(chunk_points), | |
options=self.rendering_kwargs, | |
) | |
outs.append(chunk_out) | |
# concatenate the outputs | |
point_features = { | |
k: torch.cat([out[k] for out in outs], dim=1) | |
for k in outs[0].keys() | |
} | |
return point_features | |