Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from ...utils.typing import * | |
def dot(x, y): | |
return torch.sum(x * y, -1, keepdim=True) | |
class Mesh: | |
def __init__( | |
self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], v_rgb: Integer[Tensor, "Nf 3"], **kwargs | |
) -> None: | |
self.v_pos: Float[Tensor, "Nv 3"] = v_pos | |
self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx | |
self.v_rgb: Optional[Float[Tensor, "Nv 3"]] = v_rgb | |
self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None | |
self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None | |
self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None | |
self._t_tex_idx: Optional[Float[Tensor, "Nf 3"]] = None | |
# self._v_rgb: Optional[Float[Tensor, "Nv 3"]] = None | |
self._edges: Optional[Integer[Tensor, "Ne 2"]] = None | |
self.extras: Dict[str, Any] = {} | |
for k, v in kwargs.items(): | |
self.add_extra(k, v) | |
def add_extra(self, k, v) -> None: | |
self.extras[k] = v | |
def remove_outlier(self, outlier_n_faces_threshold: Union[int, float]) -> Mesh: | |
if self.requires_grad: | |
print("Mesh is differentiable, not removing outliers") | |
return self | |
# use trimesh to first split the mesh into connected components | |
# then remove the components with less than n_face_threshold faces | |
import trimesh | |
# construct a trimesh object | |
mesh = trimesh.Trimesh( | |
vertices=self.v_pos.detach().cpu().numpy(), | |
faces=self.t_pos_idx.detach().cpu().numpy(), | |
) | |
# split the mesh into connected components | |
components = mesh.split(only_watertight=False) | |
# log the number of faces in each component | |
print( | |
"Mesh has {} components, with faces: {}".format( | |
len(components), [c.faces.shape[0] for c in components] | |
) | |
) | |
n_faces_threshold: int | |
if isinstance(outlier_n_faces_threshold, float): | |
# set the threshold to the number of faces in the largest component multiplied by outlier_n_faces_threshold | |
n_faces_threshold = int( | |
max([c.faces.shape[0] for c in components]) * outlier_n_faces_threshold | |
) | |
else: | |
# set the threshold directly to outlier_n_faces_threshold | |
n_faces_threshold = outlier_n_faces_threshold | |
# log the threshold | |
print( | |
"Removing components with less than {} faces".format(n_faces_threshold) | |
) | |
# remove the components with less than n_face_threshold faces | |
components = [c for c in components if c.faces.shape[0] >= n_faces_threshold] | |
# log the number of faces in each component after removing outliers | |
print( | |
"Mesh has {} components after removing outliers, with faces: {}".format( | |
len(components), [c.faces.shape[0] for c in components] | |
) | |
) | |
# merge the components | |
mesh = trimesh.util.concatenate(components) | |
# convert back to our mesh format | |
v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos) | |
t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx) | |
clean_mesh = Mesh(v_pos, t_pos_idx) | |
# keep the extras unchanged | |
if len(self.extras) > 0: | |
clean_mesh.extras = self.extras | |
print( | |
f"The following extra attributes are inherited from the original mesh unchanged: {list(self.extras.keys())}" | |
) | |
return clean_mesh | |
def requires_grad(self): | |
return self.v_pos.requires_grad | |
def v_nrm(self): | |
if self._v_nrm is None: | |
self._v_nrm = self._compute_vertex_normal() | |
return self._v_nrm | |
def v_tng(self): | |
if self._v_tng is None: | |
self._v_tng = self._compute_vertex_tangent() | |
return self._v_tng | |
def v_tex(self): | |
if self._v_tex is None: | |
self._v_tex, self._t_tex_idx = self._unwrap_uv() | |
return self._v_tex | |
def t_tex_idx(self): | |
if self._t_tex_idx is None: | |
self._v_tex, self._t_tex_idx = self._unwrap_uv() | |
return self._t_tex_idx | |
# @property | |
# def v_rgb(self): | |
# return self._v_rgb | |
def edges(self): | |
if self._edges is None: | |
self._edges = self._compute_edges() | |
return self._edges | |
def _compute_vertex_normal(self): | |
i0 = self.t_pos_idx[:, 0] | |
i1 = self.t_pos_idx[:, 1] | |
i2 = self.t_pos_idx[:, 2] | |
v0 = self.v_pos[i0, :] | |
v1 = self.v_pos[i1, :] | |
v2 = self.v_pos[i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0) | |
# Splat face normals to vertices | |
v_nrm = torch.zeros_like(self.v_pos) | |
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) | |
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) | |
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) | |
# Normalize, replace zero (degenerated) normals with some default value | |
v_nrm = torch.where( | |
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm) | |
) | |
v_nrm = F.normalize(v_nrm, dim=1) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(v_nrm)) | |
return v_nrm | |
def _compute_vertex_tangent(self): | |
vn_idx = [None] * 3 | |
pos = [None] * 3 | |
tex = [None] * 3 | |
for i in range(0, 3): | |
pos[i] = self.v_pos[self.t_pos_idx[:, i]] | |
tex[i] = self.v_tex[self.t_tex_idx[:, i]] | |
# t_nrm_idx is always the same as t_pos_idx | |
vn_idx[i] = self.t_pos_idx[:, i] | |
tangents = torch.zeros_like(self.v_nrm) | |
tansum = torch.zeros_like(self.v_nrm) | |
# Compute tangent space for each triangle | |
uve1 = tex[1] - tex[0] | |
uve2 = tex[2] - tex[0] | |
pe1 = pos[1] - pos[0] | |
pe2 = pos[2] - pos[0] | |
nom = pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2] | |
denom = uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1] | |
# Avoid division by zero for degenerated texture coordinates | |
tang = nom / torch.where( | |
denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6) | |
) | |
# Update all 3 vertices | |
for i in range(0, 3): | |
idx = vn_idx[i][:, None].repeat(1, 3) | |
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang | |
tansum.scatter_add_( | |
0, idx, torch.ones_like(tang) | |
) # tansum[n_i] = tansum[n_i] + 1 | |
tangents = tangents / tansum | |
# Normalize and make sure tangent is perpendicular to normal | |
tangents = F.normalize(tangents, dim=1) | |
tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(tangents)) | |
return tangents | |
def _unwrap_uv( | |
self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} | |
): | |
print("Using xatlas to perform UV unwrapping, may take a while ...") | |
import xatlas | |
atlas = xatlas.Atlas() | |
atlas.add_mesh( | |
self.v_pos.detach().cpu().numpy(), | |
self.t_pos_idx.cpu().numpy(), | |
) | |
co = xatlas.ChartOptions() | |
po = xatlas.PackOptions() | |
for k, v in xatlas_chart_options.items(): | |
setattr(co, k, v) | |
for k, v in xatlas_pack_options.items(): | |
setattr(po, k, v) | |
atlas.generate(co, po) | |
vmapping, indices, uvs = atlas.get_mesh(0) | |
vmapping = ( | |
torch.from_numpy( | |
vmapping.astype(np.uint64, casting="same_kind").view(np.int64) | |
) | |
.to(self.v_pos.device) | |
.long() | |
) | |
uvs = torch.from_numpy(uvs).to(self.v_pos.device).float() | |
indices = ( | |
torch.from_numpy( | |
indices.astype(np.uint64, casting="same_kind").view(np.int64) | |
) | |
.to(self.v_pos.device) | |
.long() | |
) | |
return uvs, indices | |
def unwrap_uv( | |
self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} | |
): | |
self._v_tex, self._t_tex_idx = self._unwrap_uv( | |
xatlas_chart_options, xatlas_pack_options | |
) | |
def set_vertex_color(self, v_rgb): | |
assert v_rgb.shape[0] == self.v_pos.shape[0] | |
self._v_rgb = v_rgb | |
def _compute_edges(self): | |
# Compute edges | |
edges = torch.cat( | |
[ | |
self.t_pos_idx[:, [0, 1]], | |
self.t_pos_idx[:, [1, 2]], | |
self.t_pos_idx[:, [2, 0]], | |
], | |
dim=0, | |
) | |
edges = edges.sort()[0] | |
edges = torch.unique(edges, dim=0) | |
return edges | |
def normal_consistency(self) -> Float[Tensor, ""]: | |
edge_nrm: Float[Tensor, "Ne 2 3"] = self.v_nrm[self.edges] | |
nc = ( | |
1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1) | |
).mean() | |
return nc | |
def _laplacian_uniform(self): | |
# from stable-dreamfusion | |
# https://github.com/ashawkey/stable-dreamfusion/blob/8fb3613e9e4cd1ded1066b46e80ca801dfb9fd06/nerf/renderer.py#L224 | |
verts, faces = self.v_pos, self.t_pos_idx | |
V = verts.shape[0] | |
F = faces.shape[0] | |
# Neighbor indices | |
ii = faces[:, [1, 2, 0]].flatten() | |
jj = faces[:, [2, 0, 1]].flatten() | |
adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique( | |
dim=1 | |
) | |
adj_values = torch.ones(adj.shape[1]).to(verts) | |
# Diagonal indices | |
diag_idx = adj[0] | |
# Build the sparse matrix | |
idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1) | |
values = torch.cat((-adj_values, adj_values)) | |
# The coalesce operation sums the duplicate indices, resulting in the | |
# correct diagonal | |
return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce() | |
def laplacian(self) -> Float[Tensor, ""]: | |
with torch.no_grad(): | |
L = self._laplacian_uniform() | |
loss = L.mm(self.v_pos) | |
loss = loss.norm(dim=1) | |
loss = loss.mean() | |
return loss |