gokaygokay's picture
Upload 93 files
0a88b62 verified
raw
history blame
18.7 kB
import os
import math
import numpy as np
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
from igl import fast_winding_number_for_meshes, point_mesh_squared_distance, read_obj
from .typing import *
def get_rank():
# SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
# therefore LOCAL_RANK needs to be checked first
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
for key in rank_keys:
rank = os.environ.get(key)
if rank is not None:
return int(rank)
return 0
def dot(x, y):
return torch.sum(x * y, -1, keepdim=True)
def reflect(x, n):
return 2 * dot(x, n) * n - x
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]]
def scale_tensor(
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale
):
if inp_scale is None:
inp_scale = (0, 1)
if tgt_scale is None:
tgt_scale = (0, 1)
if isinstance(tgt_scale, Tensor):
assert dat.shape[-1] == tgt_scale.shape[-1]
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
return dat
class _TruncExp(Function): # pylint: disable=abstract-method
# Implementation from torch-ngp:
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, x): # pylint: disable=arguments-differ
ctx.save_for_backward(x)
return torch.exp(x)
@staticmethod
@custom_bwd
def backward(ctx, g): # pylint: disable=arguments-differ
x = ctx.saved_tensors[0]
return g * torch.exp(torch.clamp(x, max=15))
class SpecifyGradient(Function):
# Implementation from stable-dreamfusion
# https://github.com/ashawkey/stable-dreamfusion
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)
@staticmethod
@custom_bwd
def backward(ctx, grad_scale):
(gt_grad,) = ctx.saved_tensors
gt_grad = gt_grad * grad_scale
return gt_grad, None
trunc_exp = _TruncExp.apply
def get_activation(name) -> Callable:
if name is None:
return lambda x: x
name = name.lower()
if name == "none":
return lambda x: x
elif name == "lin2srgb":
return lambda x: torch.where(
x > 0.0031308,
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
12.92 * x,
).clamp(0.0, 1.0)
elif name == "exp":
return lambda x: torch.exp(x)
elif name == "shifted_exp":
return lambda x: torch.exp(x - 1.0)
elif name == "trunc_exp":
return trunc_exp
elif name == "shifted_trunc_exp":
return lambda x: trunc_exp(x - 1.0)
elif name == "sigmoid":
return lambda x: torch.sigmoid(x)
elif name == "tanh":
return lambda x: torch.tanh(x)
elif name == "shifted_softplus":
return lambda x: F.softplus(x - 1.0)
elif name == "scale_-11_01":
return lambda x: x * 0.5 + 0.5
else:
try:
return getattr(F, name)
except AttributeError:
raise ValueError(f"Unknown activation function: {name}")
def chunk_batch(func: Callable, chunk_size: int, triplane=None, *args, **kwargs) -> Any:
if chunk_size <= 0:
return func(*args, **kwargs)
B = None
for arg in list(args) + list(kwargs.values()):
if isinstance(arg, torch.Tensor):
B = arg.shape[0]
break
assert (
B is not None
), "No tensor found in args or kwargs, cannot determine batch size."
out = defaultdict(list)
out_type = None
# max(1, B) to support B == 0
for i in range(0, max(1, B), chunk_size):
if triplane is not None:
out_chunk = func(triplane=triplane,
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
else:
out_chunk = func(
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
if out_chunk is None:
continue
out_type = type(out_chunk)
if isinstance(out_chunk, torch.Tensor):
out_chunk = {0: out_chunk}
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
chunk_length = len(out_chunk)
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
elif isinstance(out_chunk, dict):
pass
else:
print(
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
)
exit(1)
for k, v in out_chunk.items():
v = v if torch.is_grad_enabled() else v.detach()
out[k].append(v)
if out_type is None:
return None
out_merged: Dict[Any, Optional[torch.Tensor]] = {}
for k, v in out.items():
if all([vv is None for vv in v]):
# allow None in return value
out_merged[k] = None
elif all([isinstance(vv, torch.Tensor) for vv in v]):
out_merged[k] = torch.cat(v, dim=0)
else:
raise TypeError(
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
)
if out_type is torch.Tensor:
return out_merged[0]
elif out_type in [tuple, list]:
return out_type([out_merged[i] for i in range(chunk_length)])
elif out_type is dict:
return out_merged
def get_ray_directions(
H: int,
W: int,
focal: Union[float, Tuple[float, float]],
principal: Optional[Tuple[float, float]] = None,
use_pixel_centers: bool = True,
) -> Float[Tensor, "H W 3"]:
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
pixel_center = 0.5 if use_pixel_centers else 0
if isinstance(focal, float):
fx, fy = focal, focal
cx, cy = W / 2, H / 2
else:
fx, fy = focal
assert principal is not None
cx, cy = principal
i, j = torch.meshgrid(
torch.arange(W, dtype=torch.float32) + pixel_center,
torch.arange(H, dtype=torch.float32) + pixel_center,
indexing="xy",
)
directions: Float[Tensor, "H W 3"] = torch.stack(
[(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1
)
return directions
def get_rays(
directions: Float[Tensor, "... 3"],
c2w: Float[Tensor, "... 4 4"],
keepdim=False,
noise_scale=0.0,
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]:
# Rotate ray directions from camera coordinate to the world coordinate
assert directions.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
if c2w.ndim == 2: # (4, 4)
c2w = c2w[None, :, :]
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4)
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3)
rays_o = c2w[:, :3, 3].expand(rays_d.shape)
elif directions.ndim == 3: # (H, W, 3)
assert c2w.ndim in [2, 3]
if c2w.ndim == 2: # (4, 4)
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
-1
) # (H, W, 3)
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
elif directions.ndim == 4: # (B, H, W, 3)
assert c2w.ndim == 3 # (B, 4, 4)
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
# add camera noise to avoid grid-like artifect
# https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373
if noise_scale > 0:
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale
rays_d = F.normalize(rays_d, dim=-1)
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
def get_projection_matrix(
fovy: Float[Tensor, "B"], aspect_wh: float, near: float, far: float
) -> Float[Tensor, "B 4 4"]:
batch_size = fovy.shape[0]
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32)
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh)
proj_mtx[:, 1, 1] = -1.0 / torch.tan(
fovy / 2.0
) # add a negative sign here as the y axis is flipped in nvdiffrast output
proj_mtx[:, 2, 2] = -(far + near) / (far - near)
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near)
proj_mtx[:, 3, 2] = -1.0
return proj_mtx
def get_mvp_matrix(
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"]
) -> Float[Tensor, "B 4 4"]:
# calculate w2c from c2w: R' = Rt, t' = -Rt * t
# mathematically equivalent to (c2w)^-1
w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w)
w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1)
w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:]
w2c[:, 3, 3] = 1.0
# calculate mvp matrix by proj_mtx @ w2c (mv_mtx)
mvp_mtx = proj_mtx @ w2c
return mvp_mtx
def get_full_projection_matrix(
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"]
) -> Float[Tensor, "B 4 4"]:
return (c2w.unsqueeze(0).bmm(proj_mtx.unsqueeze(0))).squeeze(0)
# gaussian splatting functions
def convert_pose(C2W):
flip_yz = torch.eye(4, device=C2W.device)
flip_yz[1, 1] = -1
flip_yz[2, 2] = -1
C2W = torch.matmul(C2W, flip_yz)
return C2W
def get_projection_matrix_gaussian(znear, zfar, fovX, fovY, device="cuda"):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4, device=device)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def get_fov_gaussian(P):
tanHalfFovX = 1 / P[0, 0]
tanHalfFovY = 1 / P[1, 1]
fovY = math.atan(tanHalfFovY) * 2
fovX = math.atan(tanHalfFovX) * 2
return fovX, fovY
def get_cam_info_gaussian(c2w, fovx, fovy, znear, zfar):
c2w = convert_pose(c2w)
world_view_transform = torch.inverse(c2w)
world_view_transform = world_view_transform.transpose(0, 1).cuda().float()
projection_matrix = (
get_projection_matrix_gaussian(znear=znear, zfar=zfar, fovX=fovx, fovY=fovy)
.transpose(0, 1)
.cuda()
)
full_proj_transform = (
world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))
).squeeze(0)
camera_center = world_view_transform.inverse()[3, :3]
return world_view_transform, full_proj_transform, camera_center
def binary_cross_entropy(input, target):
"""
F.binary_cross_entropy is not numerically stable in mixed-precision training.
"""
return -(target * torch.log(input) + (1 - target) * torch.log(1 - input)).mean()
def tet_sdf_diff(
vert_sdf: Float[Tensor, "Nv 1"], tet_edges: Integer[Tensor, "Ne 2"]
) -> Float[Tensor, ""]:
sdf_f1x6x2 = vert_sdf[:, 0][tet_edges.reshape(-1)].reshape(-1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()
) + F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()
)
return sdf_diff
# Implementation from Latent-NeRF
# https://github.com/eladrich/latent-nerf/blob/f49ecefcd48972e69a28e3116fe95edf0fac4dc8/src/latent_nerf/models/mesh_utils.py
class MeshOBJ:
dx = torch.zeros(3).float()
dx[0] = 1
dy, dz = dx[[1, 0, 2]], dx[[2, 1, 0]]
dx, dy, dz = dx[None, :], dy[None, :], dz[None, :]
def __init__(self, v: np.ndarray, f: np.ndarray):
self.v = v
self.f = f
self.dx, self.dy, self.dz = MeshOBJ.dx, MeshOBJ.dy, MeshOBJ.dz
self.v_tensor = torch.from_numpy(self.v)
vf = self.v[self.f, :]
self.f_center = vf.mean(axis=1)
self.f_center_tensor = torch.from_numpy(self.f_center).float()
e1 = vf[:, 1, :] - vf[:, 0, :]
e2 = vf[:, 2, :] - vf[:, 0, :]
self.face_normals = np.cross(e1, e2)
self.face_normals = (
self.face_normals / np.linalg.norm(self.face_normals, axis=-1)[:, None]
)
self.face_normals_tensor = torch.from_numpy(self.face_normals)
def normalize_mesh(self, target_scale=0.5):
verts = self.v
# Compute center of bounding box
# center = torch.mean(torch.column_stack([torch.max(verts, dim=0)[0], torch.min(verts, dim=0)[0]]))
center = verts.mean(axis=0)
verts = verts - center
scale = np.max(np.linalg.norm(verts, axis=1))
verts = (verts / scale) * target_scale
return MeshOBJ(verts, self.f)
def winding_number(self, query: torch.Tensor):
device = query.device
shp = query.shape
query_np = query.detach().cpu().reshape(-1, 3).numpy()
target_alphas = fast_winding_number_for_meshes(
self.v.astype(np.float32), self.f, query_np
)
return torch.from_numpy(target_alphas).reshape(shp[:-1]).to(device)
def gaussian_weighted_distance(self, query: torch.Tensor, sigma):
device = query.device
shp = query.shape
query_np = query.detach().cpu().reshape(-1, 3).numpy()
distances, _, _ = point_mesh_squared_distance(
query_np, self.v.astype(np.float32), self.f
)
distances = torch.from_numpy(distances).reshape(shp[:-1]).to(device)
weight = torch.exp(-(distances / (2 * sigma**2)))
return weight
def ce_pq_loss(p, q, weight=None):
def clamp(v, T=0.0001):
return v.clamp(T, 1 - T)
p = p.view(q.shape)
ce = -1 * (p * torch.log(clamp(q)) + (1 - p) * torch.log(clamp(1 - q)))
if weight is not None:
ce *= weight
return ce.sum()
class ShapeLoss(nn.Module):
def __init__(self, guide_shape):
super().__init__()
self.mesh_scale = 0.7
self.proximal_surface = 0.3
self.delta = 0.2
self.shape_path = guide_shape
v, _, _, f, _, _ = read_obj(self.shape_path, float)
mesh = MeshOBJ(v, f)
matrix_rot = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) @ np.array(
[[0, 0, 1], [0, 1, 0], [-1, 0, 0]]
)
self.sketchshape = mesh.normalize_mesh(self.mesh_scale)
self.sketchshape = MeshOBJ(
np.ascontiguousarray(
(matrix_rot @ self.sketchshape.v.transpose(1, 0)).transpose(1, 0)
),
f,
)
def forward(self, xyzs, sigmas):
mesh_occ = self.sketchshape.winding_number(xyzs)
if self.proximal_surface > 0:
weight = 1 - self.sketchshape.gaussian_weighted_distance(
xyzs, self.proximal_surface
)
else:
weight = None
indicator = (mesh_occ > 0.5).float()
nerf_occ = 1 - torch.exp(-self.delta * sigmas)
nerf_occ = nerf_occ.clamp(min=0, max=1.1)
loss = ce_pq_loss(
nerf_occ, indicator, weight=weight
) # order is important for CE loss + second argument may not be optimized
return loss
def shifted_expotional_decay(a, b, c, r):
return a * torch.exp(-b * r) + c
def shifted_cosine_decay(a, b, c, r):
return a * torch.cos(b * r + c) + a
def perpendicular_component(x: Float[Tensor, "B C H W"], y: Float[Tensor, "B C H W"]):
# get the component of x that is perpendicular to y
eps = torch.ones_like(x[:, 0, 0, 0]) * 1e-6
return (
x
- (
torch.mul(x, y).sum(dim=[1, 2, 3])
/ torch.maximum(torch.mul(y, y).sum(dim=[1, 2, 3]), eps)
).view(-1, 1, 1, 1)
* y
)
def validate_empty_rays(ray_indices, t_start, t_end):
if ray_indices.nelement() == 0:
print("Warn Empty rays_indices!")
ray_indices = torch.LongTensor([0]).to(ray_indices)
t_start = torch.Tensor([0]).to(ray_indices)
t_end = torch.Tensor([0]).to(ray_indices)
return ray_indices, t_start, t_end